特种油气藏 ›› 2021, Vol. 28 ›› Issue (5): 146-153.DOI: 10.3969/j.issn.1006-6535.2021.05.021

• 油藏工程 • 上一篇    下一篇

莺歌海盆地深层高含CO2高含水气藏气相渗流机理

雷霄1, 王雯娟1, 罗吉会1, 杨柳1, 李标1, 王璐2,3, 何勇明2,3   

  1. 1.中海石油(中国)有限公司湛江分公司,广东 湛江 524057;
    2.油气藏地质及开发工程国家重点实验室,四川 成都 610059;
    3.成都理工大学,四川 成都 610059
  • 收稿日期:2020-09-24 修回日期:2021-05-06 出版日期:2021-10-15 发布日期:2022-02-17
  • 通讯作者: 王璐(1991—),男,副教授,硕士生导师,2013年毕业于西安石油大学石油工程专业,2019年毕业于中国石油大学(北京)油气田开发工程专业,获博士学位,现主要从事油气田开发方面的教学和科研工作。
  • 作者简介:雷霄(1972—),男,教授级高级工程师,1994年毕业于西南石油学院石油工程专业,2008年毕业于中国石油大学(华东)油气井工程专业,获硕士学位,现主要从事油气田开发方面的科研与管理工作。
  • 基金资助:
    国家科技重大专项“川北中下侏罗统页岩生油潜力研究”(2017ZX05049006-010)

Gas Seepage Mechanism of Deep Gas Reservoirs with High CO2 and Water Content in Yinggehai Basin

Lei Xiao1, Wang Wenjuan1, Luo Jihui1, Yang Liu1, Li Biao1, Wang Lu2,3, He Yongming2,3   

  1. 1. CNOOC Zhanjiang Branch, Zhanjiang, Guangdong 524057, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Chengdu, Sichuan 610059, China;
    3. Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2020-09-24 Revised:2021-05-06 Online:2021-10-15 Published:2022-02-17

摘要: 南海莺歌海盆地深层气藏具有高温、高压、高含水和高含CO2等典型特征,其渗流机理十分特殊。为揭示该类气藏渗流特征,剖析产气能力的影响因素,通过搭建超高温高压长岩心驱替实验系统来模拟实际储层的温压条件,开展不同含水条件及不同CO2含量下的气相渗流实验。研究表明:该类气藏渗流特征可划分为产生启动压力、低速非达西渗流、达西渗流和偏离达西渗流4个阶段;束缚水会引起低速非达西渗流,可动水会导致启动压力产生,且束缚水在高压差下会转为可动水,导致气相渗流偏离达西渗流,形成或加剧气水两相流动,降低高压差下气相渗流能力;气组分中CO2不仅会导致低速非达西渗流阶段时间延长,高含量下还会促进束缚水转为可动水,形成启动压力,并使高压差下偏离达西渗流阶段提前到来。因此,此类气藏含水饱和度和CO2含量的增加均会抑制产气能力,应严格控制气藏生产压差,避免低速非达西渗流和高压差下偏离达西渗流产生。研究结果可为该类气藏的高效开发提供理论依据。

关键词: 深层气藏, 渗流机理, 含水饱和度, CO2含量, 产气能力, 非达西渗流

Abstract: The deep gas reservoirs in Yinggehai Basin, South China Sea is featured by typical characteristics such as high temperature, high pressure, high water content and high CO2 content, resulting in a very special seepage mechanism. In order to disclose the seepage characteristics of these gas reservoirs and analyze the influencing factors of gas productivity, a experimental system of ultra-high-temperature and high-pressure long core displacement was established to simulate the temperature and pressure conditions of the actual reservoir, and gas seepage experiments were conducted with different water cuts and different CO2 contents. It was found in the study that the seepage characteristics of the gas reservoir could be divided into four stages: initiation pressure, low-velocity non-Darcy seepage, Darcy seepage and deviation from Darcy seepage; bound water would cause low-velocity non-Darcy seepage, moving water might result in initiation pressure, and bound water would turn into moving water under high pressure difference, making gas seepage deviate from Darcy seepage, causing or aggravating gas-water flowing and reducing gas seepage at high pressure difference; CO2 in the gas not only prolonged the low-velocity non-Darcy seepage, but also promoted the conversion of bound water into moving water at high content, forming initiation pressure and bringing forward the deviation from Darcy seepage at high pressure difference in advance. Therefore, the increase in water saturation and CO2 content in these reservoirs will inhibit gas production, and production pressure differential should be strictly controlled to avoid low-velocity non-Darcy seepage and deviation from Darcy seepage at high pressure difference. The results of the study may provide a theoretical basis for the efficient development of these gas reservoirs.

Key words: deep gas reservoir, seepage mechanism, water saturation, CO2 content, gas production capacity, non-Darcy seepage

中图分类号: