特种油气藏 ›› 2022, Vol. 29 ›› Issue (2): 135-140.DOI: 10.3969/j.issn.1006-6535.2022.02.020

• 油藏工程 • 上一篇    下一篇

稠油火驱过渡金属钴盐催化氧化实验

韩晓强1, 李枭2, 彭小强1, 汝灿东2, 张继周1, 史浩2, 李忠权2   

  1. 1.中国石油新疆油田分公司,新疆 克拉玛依 834000;
    2.成都理工大学,四川 成都 610059
  • 收稿日期:2021-02-26 修回日期:2021-12-30 出版日期:2022-04-25 发布日期:2023-01-10
  • 通讯作者: 史浩(1980—),男,副教授,2003年毕业于安徽理工大学环境工程专业,2011年毕业于四川大学高分子科学与工程专业,获博士学位,现主要从事化工新材料研究工作。
  • 作者简介:韩晓强(1973—),男,高级工程师,1996年毕业于成都理工学院工业分析专业,2006年毕业于新疆大学物理化学专业,获硕士学位,现主要从事油气田开发研究工作。
  • 基金资助:
    四川省科技厅应用基础项目“稠油富氧燃烧积碳及动力学机理研究”(2016JY0232)

Catalytic Oxidation Experiment of Transition Metal Cobalt Salt in In-situ Combustion for Heavy Oil

Han Xiaoqiang1, Li Xiao2, Peng Xiaoqiang1, Ru Candong2, Zhang Jizhou1, Shi Hao2, Li Zhongquan2   

  1. 1. PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China;
    2. Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2021-02-26 Revised:2021-12-30 Online:2022-04-25 Published:2023-01-10

摘要: 针对新疆红浅火驱工业化试验区稠油二次点火难的问题,开展过渡金属盐催化氧化稠油实验研究,评价过渡金属盐促进重质油火驱前缘稳定推进的效果。利用一维燃烧管开展火驱物理模拟实验,分析钴盐对稠油火驱前缘峰值温度和前缘推进的影响;采用同步热分析仪(TG-DTA)测定稠油氧化反应过程,建立稠油催化氧化动力学方程,计算稠油燃烧过程中低温氧化、燃料沉积和高温氧化3个阶段的活化能和指前因子。结果表明,添加硝酸钴后,稠油低温氧化活化能降低32%,燃料沉积阶段的活化能减少31%,提前进入高温氧化阶段,稠油燃烧的峰值温度降低50 ℃;火驱前缘峰值温度差值缩小90 ℃,实现火驱前缘稳定推进。研究结果可为火驱采油二次点火工艺提供理论和技术支持。

关键词: 火驱采油, 二次点火, 催化氧化, 硝酸钴, 动力学模拟

Abstract: On account of the difficulties for the secondary heavy oil ignition in the in-situ combustion of Hongqian Pilot Test Area, Xinjiang, an experimental study on the catalytic oxidation of heavy oil by transition metal salt was conducted to evaluate the effect of transition metal salt in promoting the stable advancement of the front end of heavy oil in-situ combustion. A physical simulation experiment of in-situ combustion was conducted with one-dimensional combustion tube to analyze the effect of cobalt salt on the peak temperature and front edge advance of heavy oil in-situ combustion. A simultaneous thermal analyzer (TG-DTA) was used to measure the oxidation process of heavy oil, establish the kinetic equation of heavy oil catalytic oxidation, and calculate the activation energy and fingertip factor in the three stages (low-temperature oxidation, fuel deposition and high-temperature oxidation) of the heavy oil combustion. The results showed that after the addition of cobalt nitrate, the activation energy of low-temperature oxidation of heavy oil was reduced by 32%, the activation energy at fuel deposition stage was reduced by 31%, the high-temperature oxidation stage was advanced, and the peak temperature of heavy oil combustion was reduced by 50 ℃; the peak temperature difference at the front edge of in-situ combustion was reduced by 90 ℃, realizing the stable advance of the front edge of in-situ combustion. The study results can theoretically and technically support the secondary ignition process of oil recovery by in-situ combustion.

Key words: oil recovery by in-situ combustion, secondary ignition, catalytic oxidation, cobalt nitrate, dynamics simulation

中图分类号: