[1] 陈正阳.基于大数据技术的页岩气产量预测[D].成都:电子科技大学,2022. CHEN Zhengyang.Prediction of shale gas production based on big data technology[D].Chengdu:University of Electronic Science and Technology of China,2022. [2] JOSHI S D.Augmentation of well productivity using slant and horizontal wells[J].Journal of Petroleum Technology,1986,40(6):729-739. [3] MUKHERJEE H,ECONOMIDES M J.A parametric comparison of horizontal and vertical well performance[J].SPE Formation Evaluation,1991,6(2):209-216. [4] 宁正福,韩树刚,程林松,等.低渗透油气藏压裂水平井产能计算方法[J].石油学报,2002,23(2):68-71. NING Zhengfu,HAN Shugang,CHENG Linsong,et al.Productivity calculation method of fractured horizontal wells in low permeability oil or gas field[J].Acta Petrolei Sinica,2002,23(2):68-71. [5] SHEIKHOUSHAGHI A,GHARAEI N Y,NIKOOFARD A.Application of rough neural network to forecast oil production rate of an oil field in a comparative study[J].Journal of Petroleum Science and Engineering,2022,209:109935. [6] 郭俊葳.构造地质模型知识图谱构建及表征方法研究[D].成都:电子科技大学,2022. GUO Junwei.Construction and representation methods of structural geological model knowledge graph[D].Chengdu:University of Electronic Science and Technology of China,2022. [7] 陆锋,诸云强,张雪英.时空知识图谱研究进展与展望[J].地球信息科学学报,2023,25(6):1091-1105. LU Feng,ZHU Yunqiang,ZHANG Xueying.Spatiotemporal knowledge graph:advances and perspectives[J].Journal of Geo-information Science,2023,25(6):1091-1105. [8] 王鑫,邹磊,王朝坤,等.知识图谱数据管理研究综述[J].软件学报,2019,30(7):2139-2174. WANG Xin,ZOU Lei,WANG Zhaokun,et al.Research on knowledge graph data management:a survey[J].Journal of Software,2019,30(7):2139-2174. [9] 王萌,王昊奋,李博涵,等.新一代知识图谱关键技术综述[J].计算机研究与发展,2022,59(9):1947-1965. WANG Meng,WANG Haofen,LI Bohan,et al.Survey on key technologies of new generation knowledge graph[J].Journal of Computer Research and Development,2022,59(9):1947-1965. [10] 汪玉,王鑫,张淑娟,等.异构大数据环境中高效率知识融合方法的研究[J].计算机工程与应用,2022,58(6):142-148. WANG Yu,WANG Xin,ZHANG Shujuan,et al.Research on efficient knowledge fusion method for heterogeneous big data environments[J].Computer Engineering and Applications,2022,58(6):142-148. [11] 何佑伟,贺质越,汤勇,等.基于机器学习的页岩气井产量评价与预测[J].石油钻采工艺,2021,43(4):518-524. HE Youwei,HE Zhiyue,TANG Yong,et al.Shale gas well production evaluation and prediction based on machine learning[J].Oil Drilling & Production Technology,2021,43(4):518-524. [12] 黄刚.知识图谱构建方法及其在油气勘探开发领域应用研究[D].大庆:东北石油大学,2019. HUANG Gang.Construction methods of knowledge graph and its application in oil and gas exploration and development[D].Daqing:Northeast Petroleum University,2019. [13] 杨寒雨,赵晓永,王磊.数据归一化方法综述[J].计算机工程与应用,2023,59(3):13-22. YANG Hanyu,ZHAO Xiaoyong,WANG Lei.Review of data normalization methods[J].Computer Engineering and Applications,2023,59(3):13-22. [14] BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32. [15] 何文栋.基于整体搜索的英文命名实体识别技术研究[D].广州:华南理工大学,2021. HE Wendong.Research on english named entity recognition technology based on global search[D].Guangzhou:South China University of Technology,2021. [16] 李天然,刘明童,张玉洁,等.基于深度学习的实体链接研究综述[J].北京大学学报(自然科学版),2021,57(1):91-98. LI Tianran,LIU Mingtong,ZHANG Yujie,et al.A review of entity linking research based on deep learning[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2021,57(1):91-98. [17] 段宗涛,李菲,陈柘.实体消歧综述[J].控制与决策,2021,36(5):1025-1039. DUAN Zongtao,LI Fei,CHEN Zhe.Entity disambiguation:a review[J].Control and Decision,2021,36(5):1025-1039. [18] 鄂海红,张文静,肖思琪,等.深度学习实体关系抽取研究综述[J].软件学报,2019,30(6):1793-1818. E Haihong,ZHANG Wenjing,XIAO Siqi,et al.Survey of entity relationship extraction based on deep learning[J].Journal of Software,2019,30(6):1793-1818. [19] 杨东华,邹开发,王宏志,等.基于Seq2Seq模型的SparQL查询预测[J].软件学报,2021,32(3):805-817. YANG Donghua,ZOU Kaifa,WANG Hongzhi,et al.SparQL query prediction based on Seq2Seq model[J].Journal of Software,2021,32(3):805-817. [20] 王晓丽,王明,刘鑫,等.基于知识图谱的油气地质评价方法及系统:CN115248863A[P].2022-10-28. WANG Xiaoli,WANG Ming,LIU Xin,et al.Oil and gas geological evaluation method and system based on knowledge graph:CN115248863A[P].2022-10-28. [21] 王轩,顾峰,闵帆,等.基于代表的交叉验证分类[J].重庆邮电大学学报(自然科学版),2021,33(5):826-833. WANG Xuan,GU Feng,MIN Fan,et al.Representative-based cross validation classification[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2021,33(5):826-833. |