特种油气藏 ›› 2025, Vol. 32 ›› Issue (1): 153-160.DOI: 10.3969/j.issn.1006-6535.2025.01.018

• 钻采工程 • 上一篇    下一篇

微粉支撑剂运移铺置规律及应用

李亭1,2, 吴清苗1,2, 羊丹1, 曾思佳3, 赵佳乐1,2, 何美琪1,2, 周卓4, 杨佳昊5   

  1. 1.长江大学,湖北 武汉 430100;
    2.油气钻采工程湖北省重点实验室(长江大学),湖北 武汉 430100;
    3.中国石化江汉油田分公司江汉采油厂,湖北 潜江 433100;
    4.中国石化江汉油田分公司石油工程技术研究院,湖北 武汉 430035;
    5.凯泽未来(无锡)新材料研究院有限公司,江苏 无锡 214123
  • 收稿日期:2024-08-03 修回日期:2024-11-26 出版日期:2025-02-25 发布日期:2025-05-13
  • 作者简介:李亭(1977—),男,教授,1998年毕业于石油大学(华东)石油工程专业,2014年毕业于成都理工大学油气田开发工程专业,获博士学位,现从事油气储层增产改造技术研究工作。
  • 基金资助:
    中国石化科技部项目“高应力储层全支撑压裂技术研究”(SINOPEC24017)

Transport and placement patterns and application of micronized proppant

LI Ting1,2, WU Qingmiao1,2, YANG Dan1, ZENG Sijia3, ZHAO Jiale1,2, HE Meiqi1,2, ZHOU Zhuo4, YANG Jiahao5   

  1. 1. Yangtze University, Wuhan, Hubei 430100, China;
    2. Hubei Provincial Key Laboratory of Oil and Gas Drilling and Production Engineering (Yangtze University), Wuhan, Hubei 430100, China;
    3. Jianghan Oil Production Plant, Sinopec Jianghan Oilfield Company, Qianjiang, Hubei 433100, China;
    4. Research Institute of Petroleum Engineering and Technology,Sinopec Jianghan Oilfield Company, Wuhan, Hubei 430035, China;
    5. Kaize Future (Wuxi) New Material Research Institute Co., Ltd., Wuxi, Jiangsu 214123, China
  • Received:2024-08-03 Revised:2024-11-26 Online:2025-02-25 Published:2025-05-13

摘要: 针对储层体积压裂过程中大量微裂缝未得到充分有效支撑的问题,优选出具有更小粒径、更优悬浮性能的微粉支撑剂,通过Fluent软件研究该支撑剂在复杂裂缝中的运移铺置规律,利用FracMan软件对比70/140目陶粒支撑剂和微粉支撑剂的压裂效果。研究表明:微粉支撑剂主要铺置在次级裂缝中,总体呈现出“前高后低”的分布形态;在一级分支缝中大量微粉支撑剂处于悬浮运移状态,仅200目微粉支撑剂发生了沉降,且沙堤平衡高度和面积较小,未形成有效沙堤;微粉支撑剂的铺置规律受粒径影响较大,当支撑剂目数从200目增加至600目时,在二级和三级分支缝中的砂堤平衡高度和砂堤面积逐渐增加,当支撑剂目数达到800目时,由于其粒径过小,大量支撑剂颗粒处于悬浮运移状态,不能沉降堆积成有效砂堤,容易造成近井端微裂缝支撑不充分的情况;与70/140目陶粒支撑剂相比,微粉支撑剂的运移距离更远,更容易进入次级裂缝和微裂缝中;微粉支撑剂可使压裂改造缝网更加复杂,页岩储层改造体积可增加17.71%,储层改造效果显著。该研究可为微粉支撑剂的应用提供借鉴。

关键词: 微裂缝, 体积压裂, 支撑剂运移, 导流能力, 微粉支撑剂, 页岩

Abstract: To address the issue of inadequate support for numerous micro-fractures during reservoir volumetric fracturing, this study has identified micronized proppant with smaller particle sizes and superior suspension performance as the preferred choice. The transport and placement patterns of this proppant within complex fractures were investigated using Fluent software, and the fracturing effects were compared between 70/140-mesh ceramic proppant and micronized proppant using FracMan software. The study shows that: micronized proppant is predominantly placed within secondary fractures, exhibiting a distribution pattern characterized by a "high in the front and low in the back" morphology. In primary branch fractures, a significant amount of micronized proppant remains in suspension, with only the 200-mesh micronized proppant undergoing sedimentation. The equilibrium height and area of the sandbanks formed are relatively small, failing to create effective sandbanks. The placement pattern of micronized proppant is significantly influenced by particle size. As the mesh size of the proppant increases from 200 to 600 meshes, the equilibrium height and area of sandbanks in secondary and tertiary branch fractures gradually increase. When the mesh size reaches 800 mesh, the particle size is so small that a large number of proppant particles remain in suspension and do not settle to form effective sandbanks, leading to potential under-support in the near-well micro-fractures. Compared to 70/140 mesh ceramic proppant, micronized proppant travels a greater distance and more readily penetrates into secondary and micro-fractures. The use of micronized proppant can increase the complexity of the fracture network, enhancing the shale reservoir stimulation volume by 17.71%, resulting in a significant improvement in reservoir stimulation effectiveness. This study can provide valuable insights for the application of micronized proppant.

Key words: micro-fracture, volumetric fracturing, proppant transport, conductivity, micronized proppant, shale

中图分类号: