[1] SHEN Zhuoyi,NENG Yuan,HAN Jun,et al.Structural styles and linkage evolution in the middle segment of a strike-slip fault:a case from the Tarim Basin,NW China[J].Journal of Structural Geology,2022,157(4):104558. [2] 赵亮.满加尔—英吉苏凹陷碎屑岩盖层特征及分类评价[J].西部探矿工程,2018,30(9):61-62,66. ZHAO Liang.Characteristics and classification evaluation of clastic caprock in the Manjiaer-Yingjisu Sag[J].West-China Exploration Engineering,2018,30(9):61-62,66. [3] 谭万仓,邵红君,王力娟,等.致密砂岩盖层特征及分类评价标准——以满加尔—英吉苏凹陷为例[J].断块油气田,2020,27(3):304-308. TAN Wancang,SHAO Hongjun,WANG Lijuan,et al.Characteristics and classification evaluation criteria of tight sandstone caprock:taking Manjiaer-Yingjisu Sag as an example[J].Fault-Block Oil & Gas Field,2020,27(3):304-308. [4] WU Guanghui,MA Bingshan,HAN Jianfa,et al.Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin,NW China[J].Petroleum Exploration Development,2021,48(3):595-607. [5] SUN Qingqing,FAN Tailiang,GAO Zhiqian,et al.New insights on the geometry and kinematics of the Shunbei 5 strike-slip fault in the central Tarim Basin,China[J].Journal of Structural Geology,2021,150(6):104400. [6] DOOLEY Tim P,SCHREURS Guido.Analogue modelling of intraplate strike-slip tectonics:a review and new experimental results[J].Tectonophysics,2012,574/575(5):1-71. [7] 李映涛,邓尚,张继标,等.深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式:以塔里木盆地顺北4号断裂带为例[J].地学前缘,2023,30(6):80-94. LI Yingtao,DENG Shang,ZHANG Jibiao,et al.Fault zone architecture of strike-slip faults in deep,tight carbonates and development of reservoir clusters under fault control:a case study in Shunbei 4# Fault Zone,Tarim Basin[J].Earth Science Frontiers,2023,30(6):80-94. [8] 陈叔阳,何云峰,王立鑫,等.塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J].岩性油气藏,2024,36(2):124-135. CHEN Shuyang,HE Yunfeng,WANG Lixin,et al.Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No.1 Fault Zone,Tarim Basin[J].Lithologic Reservoirs,2024,36(2):124-135. [9] 马庆佑,曹自成,蒋华山,等.塔河—顺北地区走滑断裂带的通源性及其与油气富集的关系[J].海相油气地质,2020,25(4):327-334. MA Qingyou,CAO Zicheng,JIANG Huashan,et al.Source-connectivity of strike slip fault zone and its relationship with oil and gas accumulation in Tahe-Shunbei Area,Tarim Basin[J].Marine Origin Petroleum Geology,2020,25(4):327-334. [10] 孔永吉,吴孔友,刘寅.塔里木盆地顺南地区走滑断裂发育特征及演化[J].地质与资源,2020,29(5):446-453. KONG Yongji,WU Kongyou,LIU Yin.Development characteristics and evolution of the strike-slip faults in Shunnan Area,Tarim Basin[J].Geology and Resources,2020,29(5):446-453. [11] 李宗杰,王鹏,陈绪云,等.塔里木盆地顺南地区超深白云岩储层地震、地质综合预测[J].石油与天然气地质,2020,41(1):59-67. LI Zongjie,WANG Peng,CHEN Xuyun,et al.Integrated seismic and geological prediction of ultra-deep dolomite reservoir in Shunnan Area,Tarim Basin[J].Oil & Gas Geology,2020,41(1):59-67. [12] 张继标,张仲培,汪必峰,等.塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测[J].石油与天然气地质,2018,39(5):955-963,1055. ZHANG Jibiao,ZHANG Zhongpei,WANG Bifeng,et al.Development pattern and prediction of induced fractures from strike-slip faults in Shunnan Area,Tarim Basin[J].Oil & Gas Geology,2018,39(5):955-963,1055. [13] 李培军,陈红汉,唐大卿,等.塔里木盆地顺南地区中—下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系[J].地球科学,2017,42(1):93-104. LI Peijun,CHEN Honghan,TANG Daqing,et al.Coupling relationship between ne strike-slip faults and hypogenic karstification in middle-lower ordovician of Shunnan Area,Tarim Basin,northwest China[J].Journal of Earth Science,2017,42(1):93-104. [14] 刘军,任丽丹,李宗杰,等.塔里木盆地顺南地区深层碳酸盐岩断裂和裂缝地震识别与评价[J].石油与天然气地质,2017,38(4):703-710. LIU Jun,REN Lidan,LI Zongjie,et al.Seismic identification and evaluation of deep carbonate faults and fractures in Shunnan Area,Tarim Basin[J].Oil & Gas Geology,2017,38(4):703-710. [15] 金仙梅,曹自成,陈建华.塔里木盆地古城墟隆起构造演化及其勘探方向[J].新疆石油地质,2013,34(4):418-420. JIN Xianmei,CAO Zicheng,CHEN Jianhua.Structural evolution and exploration direction of Guchengxu Uplift of Tarim Basin[J].Xinjiang Petroleum Geology,2013,34(4):418-420. [16] 王步清,王清华,韩利军,等.塔里木盆地东南部车尔臣断裂的分段特征及动力学机制[J].石油与天然气地质,2007,28(6):755-761. WANG Buqing,WANG Qinghua,HAN Lijun,et al.Segmentation characteristics and dynamic mechanism of the Cheerchen Fault in the southeast Tarim Basin[J].Oil & Gas Geology,2007,28(6):755-761. [17] 王凤俊,丁长辉,刘兴晓,等.塔里木盆地车尔臣断裂带构造—岩相特征及形成机理探讨[J].世界地质,2005,44(1):53-57. WANG Fengjun,DING Changhui,LIU Xingxiao,et al.Study on Cherchen Fault zone′s structure-rock facies characteristics and its formation in Tarim Basin[J].World Geology,2005,44(1):53-57. [18] 冯京,朱志新,赵同阳,等.新疆大地构造单元划分及成矿作用[J].中国地质,2022,49(4):1154-1178. FENG Jing,ZHU Zhixin,ZHAO Tongyang,et al.Subdivision of tectonic units and its metallogenesis in Xinjiang[J].Geology in China,2022,49(4):1154-1178. [19] 张仲培,徐勤琪,刘士林,等.塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J].石油实验地质,2023,45(4):761-769. ZHANG Zhongpei,XU Qinqi,LIU Shilin,et al.Characteristics of NE strike-slip fault system in the eastern section of Bachu-Maigaiti Area,Tarim Basin and its oil-gas geological significance[J].Petroleum Geology & Experiment,2023,45(4):761-769. [20] 李文山,李江海,周肖贝,等.塔里木盆地中央高磁异常带成因:来自地震反射剖面的新证据[J].北京大学学报(自然科学版),2014,50(2):281-287. LI Wenshan,LI Jianghai,ZHOU Xiaobei,et al.Genesis of high aeromagnetic anomaly zone in central Tarim Basin:new evidence from seismic profiles[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(2):281-287. [21] 刘汉香,高克凡,邓叶林.加载速率对白云岩力学特性影响的颗粒流数值试验研究[J].科学技术与工程,2020,20(25):10182-10189. LIU Hanxiang,GAO Kefan,DENG Yelin.Effect of loading rate on mechanical behavior of dolomite based on numerical test with particle flow code[J].Science Technology and Engineering,2020,20(25):10182-10189. [22] QIU Huabiao,DENG Shang,ZHANG Jibiao,et al.The evolution of a strike-slip fault network in the Guchengxu High,Tarim Basin(NW China)[J].Marine and Petroleum Geology,2022,140(3):105655. [23] 林波,张旭,况安鹏,等.塔里木盆地走滑断裂构造变形特征及油气意义——以顺北地区1号和5号断裂为例[J].石油学报,2021,42(7):906-923. LIN Bo,ZHANG Xu, KUANG Anpeng, et al.Structural deformation characteristics of strike-slip faults in Tarim Basin and their hydrocarbon significance:a case study of No.1 Fault and No.5 Fault in Shunbei Area[J].Acta Petrolei Sinica,2021,42(7):906-923. [24] ZHANG Jingqi,YU Fusheng,WANG Yuefeng,et al.Multi-phase deformation and analogue modelling of the Junggar Basin,NW China[J].Petroleum Science,2024,21(6):3720-3741. |