特种油气藏 ›› 2023, Vol. 30 ›› Issue (3): 81-87.DOI: 10.3969/j.issn.1006-6535.2023.03.010

• 油藏工程 • 上一篇    下一篇

致密砂岩气藏自支撑裂缝损伤机理及导流能力研究

孙永鹏1,2, 王传熙1,2, 戴彩丽1,2, 魏利南1,2, 陈超1,2, 谢孟珂3   

  1. 1.中国石油大学(华东),山东 青岛 266580;
    2.非常规油气开发教育部重点实验室,山东 青岛 266580;
    3.中国石油西南油气田分公司,四川 成都 610051
  • 收稿日期:2022-04-10 修回日期:2023-03-10 出版日期:2023-06-25 发布日期:2023-07-13
  • 通讯作者: 戴彩丽(1971—),女,教授,博士生导师,1993年毕业于石油大学(华东)采油工程专业,2006年毕业于中国石油大学(华东)油气田开发工程专业,现主要从事提高采收率与采油化学、非常规能源高效开发研究与应用工作。
  • 作者简介:孙永鹏(1985—),男,副教授,2007年毕业于西南石油大学石油工程专业,2014年毕业于美国密苏里科技大学石油工程专业,获博士学位,现从事非常规油气开发工作。
  • 基金资助:
    国家重点研发计划项目“油/水/固界面浸润调控智能流体提高采收率关键材料与机理研究”(2019YFA0708700)

Study on Damage Mechanism and Conductivity of Unpropped Fractures in Tight Sandstone Gas Reservoirs

Sun Yongpeng1,2, Wang Chuanxi1,2, Dai Caili1,2, Wei Linan1,2, Chen Chao1,2, Xie Mengke3   

  1. 1. China University of Petroleum (East China), Qingdao, Shandong 266580, China;
    2. Key Laboratory of Unconventional Oil and Gas Development, Ministry of Education, Qingdao, Shandong 266580, China;
    3. PetroChina Southwest Oil & Gas Field Company, Chengdu, Sichuan 610051, China
  • Received:2022-04-10 Revised:2023-03-10 Online:2023-06-25 Published:2023-07-13

摘要: 针对致密砂岩气藏压裂后自支撑裂缝导流能力发生变化的问题,建立了裂缝壁面仿真自支撑裂缝导流能力的实验评价方法,从裂缝壁面微观形貌、粗糙度、强度等方面探究导流能力损伤机理,明确了裂缝导流能力变化规律。研究表明:裂缝遇水后壁面黏土水化,并在应力作用下压实,壁面平均高度下降了8.5%;同时,裂缝壁面软化,平均硬度降低了34.3%。生产油嘴尺寸变化越密集,高应力时自支撑裂缝导流能力越高;第3次开井生产时的裂缝导流能力比首次开井下降91.7%~98.5%;错位裂缝的导流能力为无错位裂缝的18.1~140.4倍;随着压裂后地层水驱替压裂液产出,最终裂缝导流能力为原始裂缝导流能力的3.45倍。该文明确了致密气藏生产过程导流能力损伤机理,阐明了不同因素作用下自支撑裂缝导流能力变化规律,为致密砂岩气藏自支撑裂缝保护提供了基础理论依据。

关键词: 致密砂岩气藏, 自支撑裂缝, 导流能力, 损伤机理, 裂缝壁面特征

Abstract: For the change in unpropped fracture conductivity after fracturing in tight sandstone gas reservoirs, an experimental method for unpropped fracture conductivity evaluation with fracture wall simulation was established to investigate the damage mechanism of conductivity in terms of the microscopic morphology, roughness, strength and other aspects of the fracture wall, and to clarify the variation law of fracture conductivity. The study shows that after the fracture was exposed to water, the wall clay was hydrated and compacted under stress, and the average height of the wall was decreased by 8.5%; meanwhile, the fracture wall was softened and the average hardness decreased by 34.3%. The more frequent the change in production nozzle size, the higher the conductivity of the unpropped fracture under high stress; the fracture conductivity of the third well opening was 91.7%-98.5% lower than that of the first well opening; the conductivity of misaligned fractures was 18.1-140.4 times that of non-misaligned fractures. With the formation water displacing fracturing fluid after fracturing, the conductivity of the final fracture was 3.45 times that of the original fracture. In this paper, the conductivity damage mechanism in the production of tight gas reservoirs was defined, and the variation law of unpropped fracture conductivity under the action of different factors was clarified, which provides a basic theoretical basis for the protection of unpropped fractures in tight sandstone gas reservoirs.

Key words: tight sandstone gas reservoir, unpropped fracture, conductivity, damage mechanism, fracture wall characteristics

中图分类号: