特种油气藏 ›› 2023, Vol. 30 ›› Issue (5): 135-143.DOI: 10.3969/j.issn.1006-6535.2023.05.018

• 油藏工程 • 上一篇    下一篇

基于XGBoost算法的低渗透致密气井动静一体化分类模型

商永涛1, 寨硕2, 林新宇1, 李相亮1, 李辉1, 冯青1   

  1. 1.中海油田服务股份有限公司,天津 300459;
    2.成都理工大学,四川 成都 610059
  • 收稿日期:2022-08-14 修回日期:2023-06-24 出版日期:2023-10-25 发布日期:2023-12-25
  • 通讯作者: 寨硕(1996—),女,2019年毕业于河北地质大学地理信息科学专业,现为成都理工大学石油与天然气工程专业在读硕士研究生,主要从事油气田开发技术应用方面的研究工作。
  • 作者简介:商永涛(1981—),男,高级工程师,2008年毕业于中国石油大学(华东)无线电物理专业,2011年毕业于该校无线电物理专业,获硕士学位,现主要从事油气田开发开采技术应用方面的研究工作。
  • 基金资助:
    国家自然科学基金“页岩储层纳米孔隙结构表征及渗流机理研究”(51304032)

Dynamic and Static Integrated Classification Model for Low Permeability Tight Gas Wells Based on XGBoost Algorithm

Shang Yongtao1, Zhai Shuo2, Lin Xinyu1, Li Xiangliang1, Li Hui1, Feng Qing1   

  1. 1. China Oilfield Services Limited, Tianjin 300459, China;
    2. Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2022-08-14 Revised:2023-06-24 Online:2023-10-25 Published:2023-12-25

摘要: 子米气田为典型的低渗透致密气田,不同气井储层物性及生产特征差异大,开发策略亟需改善。针对该问题,提出了一种基于XGBoost算法的致密气井分类方法。通过计算特征参数的皮尔逊相关系数,判断4个动态、5个静态特征参数与气井产能的相关程度,以此确定模型的输入特征。然后基于XGBoost算法,通过参数优化,完成模型训练并对子米气田进行气井分类。研究表明:影响气井分类的主要因素为生产配产、原始地层压力、有效厚度、孔隙度和无阻流量;子米气田1、2类气井产能主要受到储层厚度和基质渗透率的影响,3类气井产能主要影响因素为有效厚度和含气饱和度;与专家划分结果相比,模型分类结果准确率为92.3%。该研究提高了气井分类实效性,降低了人为主观性,分类结果切合矿场实际,对气井分类管理和开发策略的制订有一定的指导意义。

关键词: 机器学习, 气井分类, XGBoost算法, 子米气田

Abstract: The Zimi Gas Field is a typical low-permeability tight gas field with great differences in reservoir physical properties and production characteristics among different gas well reservoirs, so the development strategy is in urgent need of improvement. To address this problem, a classification method for tight gas wells based on XGBoost algorithm is proposed. The input features of the model are determined by calculating Pearson correlation coefficients of the feature parameters and judging the correlation degree of 4 dynamic and 5 static feature parameters with gas well productivity. Then, based on the XGBoost algorithm, the model training is completed and gas wells are classified in Zimi Gas Field through parameter optimization. The study shows that the main factors affecting gas well classification are production allocation, original formation pressure, effective thickness, porosity and open flow capacity; the gas well productivity of Category 1 and 2 in Zimi Gas Field is mainly affected by reservoir thickness and matrix permeability, while the main factors affecting the gas well productivity of Category 3 are effective thickness and gas saturation; the accuracy of the model classification results is 92.3% compared with the expert classification results. This study improves the effectiveness of gas well classification, reduces human subjectivity, and the classification results are in line with the actual mine field, which has a certain guidance for gas well classification management and development strategy formulation.

Key words: machine learning, gas well classification, XGBoost algorithm, Zimi Gas Field

中图分类号: