[1] 李松,汤达祯,许浩,等.应力条件制约下不同埋深煤储层物性差异演化[J].石油学报,2015,36(增刊1):68-75. LI Song,TANG Dazhen,XU Hao,et al.Evolution of physical differences in various buried depth of coal reservoirs under constraint of stress[J]. Acta Petrolei Sinica,2015,36(S1):68-75. [2] 樊祺章,蔡益栋,贝金翰,等.煤岩演化程度对煤储层孔裂隙结构的控制作用[J].现代地质,2020,34(2):273-280. FAN Qizhang,CAI Yidong,BEI Jinhan,et al.Pore and fracture structure of coal reservoir constrained by coal metamorphism[J].Geoscience,2020,34(2):273-280. [3] 张军建.中高阶煤储层孔裂隙结构及多层合采孔渗动态研究[D].徐州:中国矿业大学(徐州),2020. ZHANG Junjian.Pore-fracture system characterization and dynamic variation of porosity-permeability duirng multi-layer drainage in middle and high rank coal reservoirs[D].Xuzhou:China University of Mining and Technology(Xuzhou),2020. [4] 何发岐,董昭雄.深部煤层气资源开发潜力——以鄂尔多斯盆地大牛地气田为例[J].石油与天然气地质,2022,43(2):277-285. HE Faqi,DONG Zhaoxiong.Development potential of deep coalbed methane:a case study in the Daniudi gas field,Ordos Basin[J].Oil & Gas Geology,2022,43(2):277-285. [5] 郭旭升,周德华,赵培荣,等. 鄂尔多斯盆地石炭系—二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质,2022,43(5):1013-1023. GUO Xusheng,ZHOU Dehua,ZHAO Peirong,et al.Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata,Ordos Basin[J].Oil & Gas Geology,2022,43(5):1013-1023. [6] 程鸣,傅雪海,张苗,等.沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J].天然气地球科学,2018,29(8):1163-1171. CHENG Ming,FU Xuehai,ZHANG Miao,et al.Comparative study on porosity and permeability in net confining stress of “three natural gases” in coal series reservoirs in Guxian County, Qinshui Basin[J].Natural Gas Geoscience,2018,29(8):1163-1171. [7] CHEN S, TANG D, TAO S, et al.Fractal analysis of the dynamic variation in pore-fracture systems under the action of stress using a low-field NMR relaxation method:an experimental study of coals from western Guizhou in China[J].Journal of Petroleum Science and Engineering,2019,173:617-629. [8] 温兆翠. 构造煤储层非均质性层次—熵权法耦合评价模型研究[D].徐州:中国矿业大学(徐州),2022. WEN Zhaocui.Study on AHP-EWM coupling model evaluation of heterogeneity in deformed coal reservoirs[D].Xuzhou:China University of Mining and Technology(Xuzhou),2022. [9] 杨延辉,刘世奇,桑树勋,等.基于三维空间表征的高阶煤连通孔隙发育特征[J].煤炭科学技术,2016,44(10):70-76. YANG Yanhui,LIU Shiqi,SANG Shuxun,et al.Interconnected pore development features of high rank coal based on 3D space characteristics[J].Coal Science and Technology,2016,44(10):70-76. [10] 王俏,王兆丰,代菊花,等.高温高压吸附后焦煤的孔隙结构变化特性[J].安全与环境学报,2021,21(6):2602-2608. WANG Qiao, WANG Zhaofeng,DAI Juhua,et al.Pore structure changing features of the coking coal due to the adsorption of high temperature and high pressure[J].Journal of Safety and Environment,2021,21(6):2602-2608. [11] 刘怀谦,王磊,谢广祥,等.煤体孔隙结构综合表征及全孔径分形特征[J].采矿与安全工程学报,2022,39(3):458-469,479. LIU Huaiqian, WANG Lei, XIE Guangxiang,et al.Comprehensive characterization and full pore size fractal characteristics of coal pore structure[J].Journal of Safety and Environment,2022,39(3):458-469,479. [12] 张村,马健起,兰世勇,等.基于针入强度的不同含水率煤样强度弱化特征与微观机制[J].煤炭科学技术,2023,51(增刊1):40-49. ZHANG Cun,MA Jianqi,LAN Shiyong,et al.Strength weakening characteristics and microscopic mechanism of coal samples with different water contents based on penetration strength[J].Coal Science and Technology,2023,51(S1):40-49. [13] 徐吉钊,翟成,桑树勋,等.基于低场核磁共振技术的液态CO2循环致裂煤体孔隙特征演化规律[J].煤炭学报, 2021, 46(11):3578-3589. XU Jizhao,ZHAI Cheng,SANG Shuxun,et al.Pore evolution of coals affected by cyclical liquid CO2 fracturing based on the low-field nuclear magnetic resonances[J].Journal of China Coal Society, 2021, 46(11):3578-3589. [14] ZHANG J J.CHU X X,WEI C T. et al.Review on the application of low-field nuclear magnetic resonance technology in coalbed methane production simulation [J].ACS omega,2022,7(30):26298-26307. [15] ZHANG J J.WEI C T,CHU X X,et al.Multifractal analysis in characterizing adsorption pore heterogeneity of middle- and high-rank coal reservoirs.[J].ACS omega,2020,5(31):19385-19401. [16] 王民,焦晨雪,李传明,等.东营凹陷沙河街组页岩微观孔隙多重分形特征[J].油气地质与采收率,2019,26(1):72-79. WANG Min,JIAO Chenxue,LI Chuanming,et al.Multi-fractal characteristics of micro-pores of Shahejie Formation shale in Dongying Sag[J].Petroleum Geology & Recovery Efficiency,2019,26(1):72-79. [17] 全国煤炭标准化技术委员会.煤岩样品采取方法:GB/T 19222—2003[S].北京:中国标准出版社,2003:1-8. China National Coal Standardization Technology Committee.Sampling of coal petrology:GB/T 19222—2003[S].Beijing:Standards Press of China,2003:1-8. [18] 全国煤炭标准化技术委员会.煤的镜质体反射率显微镜测定方法:GB/T 6948—1998[S].北京:中国标准出版社,1998:1-9. China National Coal Standardization Technology Committee.Microscopicopical determination of the reflectance of vitrinite in coal:GB/T 6948—1998[S].Beijing:Standards Press of China,1998:1-9. [19] 全国煤炭标准化技术委员会.煤的工业分析方法:GB/T 212—2001[S].北京:中国标准出版社,2002:1-16. China National Coal Standardization Technology Committee.Proximate analysis of coal:GB/T 212—2001[S].Beijing:Standards Press of China,2002:1-16. |