[1] 张帆, 张群, 周朝辉, 等.耐温抗盐甜菜碱表面活性剂的表征及性能研究[J].油田化学, 2011, 28(4):427-430. ZHANG Fan,ZHANG Qun,ZHOU Chaohui,et al.Characterization and property of a heat-resistant and salt-tolerant Betaine Surfactant[J].Oilfield Chemistry,2011,28(4):427-430. [2] ZHOU J M,SRIVASTAVA M,HAHN R,et al.Evaluation of an amphoteric surfactant for CO2 foam applications: a comparative study[C].SPE200315-MS,2020:355-368. [3] FUSENI A B,ALSOFI A M,ALJULAIH A H,et al.Development and evaluation of foam-based conformance control for a high-salinity and high-temperature carbonate[J].Journal of Petroleum Exploration and Production Technology,2018,8(4):1341-1348. [4] 赵立艳, 樊西惊. 表面活性剂驱油体系的新发展[J]. 西安石油学院学报(自然科学版), 2000, 25(2):55-58. ZHAO Liyan,FAN Xijing.The new development of surfactant oil displacement systems[J].Journal of Xi′an Shiyou University(Natural Science Edition),2000,25(2):55-58. [5] 方吉超, 戴彩丽, 由庆, 等. 塔中402CⅢ高温高盐油藏泡沫驱实验研究[J].油气地质与采收率, 2014, 21(4):84-88. FANG Jichao,DAI Caili,YOU Qing,et al.Experimental study on foam flooding in Tazhong 402CⅢ high temperature and high salinity reservoir[J].Petroleum Geology and Recovery Efficiency,2014,21(4):84-88. [6] DA C,ALZOBAIDI S,JIAN G,et al.Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150 ℃ in high salinity brine[J].Journal of Petroleum Science and Engineering,2018,166(33):880-890. [7] SUFFRIDGE F E,RATERMAN K T,RUSSELL G C.Foam performance under reservoir conditions[C].SPE19691-MS,1989:1235-1252. [8] REN G,SANDERS A,FRIESEN D,et al.Understanding the impact of condensate composition on performance of gas well deliquification surfactants[C].SPE192142-MS,2018:1563-1578. [9] WEI P,PU W,SUN L,et al.Research on nitrogen foam for enhancing oil recovery in harsh reservoirs[J].Journal of Petroleum Science and Engineering,2017,157(3):27-38. [10] 李振泉, 延辉, 宋新旺, 等.磺基甜菜碱两性表面活性剂的结构性质[J].化学学报, 2011, 69(8):49-55. LI Zhenquan,YAN Hui,SONG Xinwang,et al.Structural properties of zwitterionic surfactant sulfobetaine[J].Acta Chimica Sinica,2011,69(8):49-55. [11] 郭淑凤.耐温抗盐改性甜菜碱表面活性剂MBS16的合成及室内性能评价[J].油田化学, 2016, 33(3):477-480,486. GUO Shufeng.Synthesis and properties of modified betaine surfactant MBS16[J].Oilfield Chemistry,2016,33(3):477-480,486. [12] 葛际江, 张天赐, 郭洪宾, 等.一种高温高压泡沫评价装置及评价方法:112098602B[P].2023-02-28. GE Jijiang,ZHANG Tianci,GUO Hongbin,et al.A high temperature and high pressure foam evaluation device and evaluation method:112098602B[P].2023-02-28. [13] KOELSCH P,MOTSCHMANN H.Relating foam lamella stability and surface dilational rheology[J].Langmuir,2005,21(14):6265-6269. [14] METIN C O,BARAN J R,NGUYEN Q P.Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface[J].Journal of Nanoparticle Research,2012,14(11):1246. [15] JIAN G,PUERTO M,WEHOWSKY A,et al.Characterizing adsorption of associating surfactants on carbonates surfaces[J].Journal of Colloid and Interface Science,2018,513(3):684-692. [16] LI L J,GE J J,LI K X,et al.The evaluation of dodecyl hydroxy sulfobetaine as a high-temperature and high-salinity resistant foaming agent in sandstone reservoirs[J].Journal of Dispersion Science and Technology,2024,45(4):759-767. [17] WANG C,FANG H,GONG Q,et al.Roles of catanionic surfactant mixtures on the stability of foams in the presence of oil[J].Energy & Fuels,2016,30(8):6355-6364. [18] WANG Z,JIN Y,WANG T,et al.Effect of branched chain and polyoxyethylene group on surface dilational rheology of cationic surfactants[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,577(2):249-256. [19] SUN L,SUN X H,ZHANG Y C,et al.Stability of high-salinity-enhanced foam: surface behavior and thin-film drainage[J].Petroleum Science,2023,20(4):2343-2353. [20] 中国石化集团胜利石油管理局.驱油用表面活性剂选择技术要求:Q/SH1020 2191—2013[S].北京:中国标准出版社,2013:1-12. Shengli Petroleum Administration Bureau of China Petrochemical Group.Technical requirements for surfactant selection for oil displacement:Q/SH1020 2191—2013[S].Beijing:Standards Press of China,2013:1-12. [21] 朱怀江,杨普华.化学驱中动态界面张力现象对驱油效率的影响[J].石油勘探与开发,1994,21(2):74-80. ZHU Huaijiang,YANG Puhua.Effect of dynamic interfacial tension on displacement efficiency in chemical flooding[J].Petroleum Exploration and Development,1994,21(2):74-80. [22] KUEHNE D L,EHMAN D I,EMANUEL A S,et al.Design and evaluation of a nitrogen-foam field trial[J].Journal of Petroleum Technology,1990,42(4):504-512. [23] TSAU J S,HELLER J P.Evaluation of surfactants for CO2-foam mobility control[C].SPE24013-MS,1992:621-629. [24] SVORSTØ L I,VASSENDEN F,MANNHARDT K.Laboratory studies for design of a foam pilot in the Snorre Field[C].SPE35400-MS,1996:563-573. [25] SCHRAMM L L.Foams:fundations and applications in the petroleum industry[M].Washington DC:American Chemical Society,1994:270-272. [26] BRODE Ⅲ P F.Adsorption of ultra-long-chain zwitterionic surfactants on a polar solid[J].Langmuir,1988,4(1):176-180. [27] HU X,LI Y,SUN H,et al.Effect of divalent cationic ions on the adsorption behavior of zwitterionic surfactant at silica/solution interface[J].The Journal of Physical Chemistry B,2010,114(27):8910-8916. [28] HANAMERTANI A S,SARAJI S,PIRI M.A comparative investigation of the effect of gas type on foam strength and flow behavior in tight carbonates[J].Chemical Engineering Science,2023,276(3):118798. [29] HELLER J P,LIEN C L,KUNTAMUKKULA M S.Foamlike dispersions for mobility control in CO2 floods[J].Society of Petroleum Engineers Journal,1985,25(4):603-613. [30] NOVOSAD J J,IONESCU E F.Foam forming surfactants for Beaverhill Lake carbonates and Gilwood Sands Reservoirs[C].PETSOC-87-38-80,1987:1345-1368. |