特种油气藏 ›› 2024, Vol. 32 ›› Issue (5): 159-166.DOI: 10.3969/j.issn.1006-6535.2025.05.019

• • 上一篇    下一篇

基于蜣螂差分进化算法的水力压裂微地震震源定位方法

徐兴盛1, 李玮1,2, 张岩1, 王敏1, 赵欢1,2, 王剑波1, 王思奇1, 何田素1   

  1. 1.东北石油大学,黑龙江 大庆 163318;
    2.油气钻完井技术国家工程研究中心,北京 102206
  • 收稿日期:2024-09-04 修回日期:2025-08-01 出版日期:2025-09-25 发布日期:2025-10-30
  • 通讯作者: 李玮(1979—),男,教授,博士生导师,2003年毕业于大庆石油学院石油工程专业,2010年毕业于东北石油大学油气井工程专业,获博士学位,现从事高效钻井破岩、水力压裂、钻井优化等方面的研究工作。
  • 作者简介:徐兴盛(1999—),男,2022年毕业于长春工业大学电气工程及其自动化专业,现为东北石油大学油气井工程专业在读硕士研究生,主要从事水力压裂方面的研究工作。
  • 基金资助:
    黑龙江省科技创新基地奖励项目“数智化油田信息感知与智能分析处理关键技术研究”(JD24A009)

Hydraulic fracturing microseismic source localization method based on dung beetle optimizer with differential evolution

XU Xingsheng1, LI Wei1,2, ZHANG Yan1, WANG Min1, ZHAO Huan1,2, WANG Jianbo1, WANG Siqi1, HE Tiansu1   

  1. 1. Northeast Petroleum University, Daqing, Heilongjiang 163318, China;
    2. National Engineering Research Center for Oil and Gas Drilling and Completion Technology, Beijing, 102206, China
  • Received:2024-09-04 Revised:2025-08-01 Online:2025-09-25 Published:2025-10-30

摘要: 为提升水力压裂中微地震初至时间不稳定条件下的定位精度,结合标准蜣螂优化算法(Dung Beetle Optimizer,DBO)和时差定位法(Time difference of arrival,TDOA)速度模型,建立了蜣螂差分进化算法(DE-DBO)。该算法在标准蜣螂优化算法的基础上通过Bernoulli混沌映射进行蜣螂初始位置的初始化,提高种群多样性,采用差分进化算法增强DBO的全局搜索能力,利用莱维飞行策略来提高群体搜索的多样性,引导搜索算法跳出局部最优。模拟结果表明:当波速在±1%、±3%和±5%的范围内浮动时,DE-DBO有更小的均方根误差和绝对误差,其定位精度和收敛速度以及算法的稳定性均优于传统的标准蜣螂优化算法、粒子群算法和遗传算法。研究成果不仅提高了微地震定位在速度模型不确定情况下的精度和稳定性,也对水力压裂现场的裂缝动态监测与压裂效果评估具有重要意义。

关键词: 微地震监测, 震源定位, 蜣螂算法, 群智能算法, 水力压裂

Abstract: To improve the positioning accuracy under unstable first arrival time conditions of microseismic events in hydraulic fracturing, a Dung Beetle Optimizer with Differential Evolution (DE-DBO) algorithm was established by combining the Dung Beetle Optimizer (DBO) and the Time Difference of Arrival (TDOA) velocity model. This algorithm initializes the initial positions of dung beetles through Bernoulli chaotic mapping on the basis of the standard DBO to improve population diversity, uses differential evolution algorithm to enhance the global search ability of DBO, and uses the Levy flight strategy to improve the diversity of group search and guide the search algorithm to jump out of local optima. The simulation results show that when the wave velocity fluctuates within the range of ±1%, ±3%, and ±5%, DE-DBO has smaller root mean square error and absolute error. Its positioning accuracy, convergence speed, and algorithm stability are better than those of the traditional standard DBO, particle swarm optimization, and genetic algorithm. The research results not only improve the accuracy and stability of microseismic positioning under uncertain velocity models but also have great significance for fracture dynamic monitoring and fracturing effect evaluation at hydraulic fracturing sites.

Key words: microseismic monitoring, seismic source location, dung beetle algorithm, swarm intelligence algorithm, hydraulic fracturing

中图分类号: