特种油气藏 ›› 2025, Vol. 32 ›› Issue (2): 22-32.DOI: 10.3969/j.issn.1006-6535.2025.02.003

• 地质勘探 • 上一篇    下一篇

川南龙马溪组页岩储层微观孔隙结构及其对吸附能力的影响

李帅智1,2, 刘成林1,2, 刘文平1,2,3, 贺昱搏1,2, 刘佳4, 徐亮4   

  1. 1.中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249;
    2.中国石油大学(北京)地球科学学院,北京 102249;
    3.中国石油西南油气田分公司,四川 成都 610051;
    4.中国石油西南油气田分公司页岩气研究院,四川 成都 610051
  • 收稿日期:2024-05-11 修回日期:2025-01-25 出版日期:2025-04-25 发布日期:2025-06-16
  • 通讯作者: 刘成林(1970—),男,教授、博士生导师,1994年毕业于石油大学(北京)综合勘探专业,2004年毕业于该校矿物学、岩石学与矿床学专业,获博士学位,现主要从事非常规油气成藏与资源评价研究工作。
  • 作者简介:李帅智(1999—),男,2021年毕业于中国石油大学(北京)资源勘查工程专业,现为该校地质资源与地质工程专业在读博士研究生,主要从事页岩储层研究工作。
  • 基金资助:
    国家重点研发计划“富氦天然气成藏机制及氦资源分布预测技术变革性技术关键科学问题”(2021YFA0719000);中国石油西南油气田页岩气研究院专项“川南深层页岩气储集下限与差异性保存机制”(JS2022-35)

Microporous structure of the Longmaxi Formation shale reservoirs in southern Sichuan Basin and its effect on adsorption capacity

LI Shuaizhi1,2, LIU Chenglin1,2, LIU Wenping1,2,3, HE Yubo1,2, LIU Jia4, XU Liang4   

  1. 1. State Key Laboratory of Oil and Gas Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China;
    3. PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610051, China;
    4. Shale Gas Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610051, China
  • Received:2024-05-11 Revised:2025-01-25 Online:2025-04-25 Published:2025-06-16

摘要: 页岩气以吸附态为主赋存于有机质和页岩矿物颗粒表面,为强化对龙马溪组一小层一亚段页岩纳米级微、介孔孔隙结构的认识,并对比2类孔隙结构对页岩气吸附能力的影响,采用氩离子抛光-场发射扫描电镜、低压N2/CO2吸附、CH4等温吸附实验,分析了不同页岩岩相微孔、介孔孔隙结构和孔径分布的差别,建立微孔、介孔孔隙结构和页岩气吸附能力的关系,对比了2类孔隙对页岩气吸附能力的贡献。研究表明:龙马溪组页岩主要发育微孔,优势孔径范围为0.4~0.6 nm、0.8~1.0 nm,介孔相对发育程度差;泥质页岩微孔孔隙比表面积最大,钙质页岩介孔比表面积最大,泥质页岩的微孔、介孔孔体积均为最大;泥质、硅质、碳酸盐质和混合质页岩孔隙结构均具有分形特征,硅质页岩微孔分形维数最大,钙质页岩介孔分形维数最大;随着TOC增大,页岩微孔的分形维数、比表面积、孔体积和介孔孔体积均相应增加;TOC、微孔和介孔的比表面积、分形维数、孔体积对页岩气吸附能力均为正贡献,且微孔对吸附能力影响作用更强;高TOC、最大微孔比表面积和孔体积的泥质页岩是页岩气吸附能力最强的岩相。研究结果对川南龙马溪组页岩气勘探与开发具有重要的指导意义。

关键词: 页岩, 孔隙结构, 吸附能力, 龙马溪组, 川南地区

Abstract: Shale gas primarily exists in an adsorbed state on the surfaces of organic matter and shale mineral particles. To enhance the understanding of the nanoscale micro-and meso-porous structures within the first sub-bed, first sub-member of the Longmaxi Formation and to compare the differences in the impact of two types of pore structures on shale gas adsorption capacity, this study employed argon ion polishing-field emission scanning electron microscopy, low-pressure N2/CO2 adsorption, and CH4 isothermal adsorption experiments, analyzed the differences in micro porous structure and meso porous structure and pore size distributions among various shale lithofacies, established the relationship between micro porous structure and meso porous structure and shale gas adsorption capacity, and compared the contributions of the two types of pores to shale gas adsorption capacity. The study shows that: the Longmaxi Formation shale predominantly develops micropores, with dominant pore size ranging from 0.4 to 0.6 nm and 0.8 to 1.0 nm, and has a relatively underdeveloped meso porous structure. The argillaceous shale has the largest micropore specific surface area, while the calcareous shale has the largest meso pore specific surface area. The argillaceous shale has both the largest micro porous structure and meso pore volumes. Shales of argillaceous, siliceous, carbonate, and mixed lithofacies all exhibit fractal characteristics in their pore structures, with the siliceous shale having the largest micropore fractal dimension and the calcareous shale having the largest meso pore fractal dimension. As the Total Organic Carbon (TOC) content increases, the fractal dimension, specific surface area, pore volume, and meso pore volume of shale micropores correspondingly increase. The TOC content, micro pore and meso pore specific surface areas, fractal dimensions, and pore volumes all positively contribute to shale gas adsorption capacity, with micropores having a stronger influence. The argillaceous shale with high TOC content, maximum micropore specific surface area, and pore volume is the most favorable lithofacies for shale gas adsorption capacity. The findings of this study have significant implications for the exploration and development of shale gas in the Longmaxi Formation in southern Sichuan Basin.

Key words: shale, pore structure, adsorption capacity, Longmaxi Formation, southern Sichuan Basin

中图分类号: