特种油气藏 ›› 2025, Vol. 32 ›› Issue (3): 142-149.DOI: 10.3969/j.issn.1006-6535.2025.03.017

• 钻采工程 • 上一篇    下一篇

超深裂缝性地层直推法压井参数设计方法

赵海建1, 李大伟1, 魏斯壮2, 王雪松3, 吴广4, 李庆峰5   

  1. 1.中海石油(中国)有限公司天津分公司,天津 300450;
    2.中国海洋石油集团有限公司,北京 100010;
    3.中海油田服务股份有限公司,海南 海口 570100;
    4.中海油田服务股份有限公司,天津 300450;
    5.西南石油大学,四川 成都 610500
  • 收稿日期:2023-10-21 修回日期:2025-02-14 出版日期:2025-06-25 发布日期:2025-07-08
  • 作者简介:赵海建(1989—),男,工程师,2010年毕业于西南石油大学石油工程专业,2013年毕业于该校石油与天然气工程专业,获硕士学位,现从事钻完井工程方面的研究工作。
  • 基金资助:
    中国海油海上钻完井液与固井重点实验室2023年自主基础前瞻研究课题(KJQZ-2023-0002)

Design method for well-killing parameters in ultra-deep fractured formations using direct-push method

ZHAO Haijian1, LI Dawei1, WEI Sizhuang2, WANG Xuesong3, WU Guang4, LI Qingfeng5   

  1. 1. CNOOC (China) Tianjin Company, Tianjin 300450, China;
    2. China National Offshore Oil Corporation, Beijing 100010, China;
    3. China Oilfield Services Limited, Haikou, Hainan 570100, China;
    4. China Oilfield Services Limited, Tianjin 300450, China;
    5. Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2023-10-21 Revised:2025-02-14 Online:2025-06-25 Published:2025-07-08

摘要: 针对超深裂缝性地层直推法压井参数计算不合理,导致施工安全风险较大的问题,基于渗流理论、井筒续流理论和气液两相流理论,对压井前井筒内流体的初始分布状态、压井过程中井筒和地层的压力变化规律、压井液密度及排量设计方法等开展了研究,并建立了双梯度压井液密度计算方法与最小压井液排量计算方法。研究表明:压井前考虑溢流循环、关井续流及关井滑脱3个过程,结合漂移流动模型,能够更准确地计算气液两相流高度与持气率;以储层保护为目标提出的双梯度压井液密度设计方法,能够减少推入地层中的钻井液量,大幅降低储层污染风险;综合高井口回压与气液逆流条件下气泡滑脱的特点,以小气泡滑脱速度计算直推法最小压井液排量,更符合实际。双梯度压井液密度设计方法和最小压井液排量计算方法与实际压井案例及全尺寸实验进行了对比验证,误差均在20%以内,表明该压井参数设计方法科学合理。该研究方法及结果可为现场工程师采用直推法压井时提供技术参考。

关键词: 压井, 直推法, 气液两相流, 气泡滑脱, 超深储层, 裂缝性地层

Abstract: To address the issue of unreasonable well-killing parameter calculations for the direct-push method in ultra-deep fractured formations, which leads to significant construction safety risks, research, based on seepage theory, wellbore afterflow theory, and gas-liquid two-phase flow theory, has been conducted to investigate the initial distribution state of fluids in the wellbore before well-killing, the pressure variation patterns in the wellbore and formation during well-killing, and the design methods for well-killing fluid density and displacement. Additionally, a dual-gradient well-killing fluid density calculation method and a minimum well-killing fluid displacement calculation method have been established. The study shows that considering overflow circulation, shut-in afterflow, and shut-in slippage before well-killing, and using a drift flow model, it more accurately calculates the height and gas holdup of gas-liquid two-phase flow. The dual-gradient killing fluid density design method proposed with the goal of reservoir protection can reduce the amount of drilling fluid pushed into the formation and significantly lower the risk of reservoir contamination. By integrating the characteristics of bubble slippage under high wellhead backpressure and counter-current gas-liquid flow conditions, the minimum killing fluid displacement for the direct-push method is calculated based on the slippage velocity of small bubbles, which is more practical. The dual-gradient killing fluid density design method and the minimum killing fluid displacement calculation method have been compared and verified with actual well-killing cases and full-scale experiments, with errors all within 20%, indicating that the well-killing parameter design method is scientific and rational. This research method and its results can provide technical references for field engineers when using the direct-push method for well killing.

Key words: well-killing, direct-push method, gas-liquid two-phase flow, bubble slippage, ultra-deep reservoir, fractured formation

中图分类号: