[1] 王凤林.矿区煤层气综合开采模式判识系统的研究[D].北京:中国矿业大学(北京),2010. WANG Fenglin.Study on the recognition system of integrated mining model for cbm in mining areas[D].Beijing: China University of Mining and Technology (Beijing), 2010. [2] 张彦军,郑闰,张超凡,等.煤炭微波热解技术研究进展[J].煤炭科学技术,2017,45(12):205-211. ZHANG Yanjun,ZHENG Run,ZHANG Chaofan, et al.Research progress on coal microwave pyrolysis technology[J].Coal Science and Technology, 2017, 45(12): 205-211. [3] 邹芳芳,郝静远,张行程,等.微波环境化学[J].微波化学,2019,3(1):7-13. ZOU Fangfang, HAO Jingyuan, ZHANG Xingcheng, et al.Microwave environment chemistry[J].Microwave Chemistry, 2019, 3(1): 7-13. [4] 马双忱,姚娟娟,金鑫,等.微波化学中微波的热与非热效应研究进展[J].化学通报,2011,74(1):41-46. MA Shuangchen,YAO Juanjuan,JIN Xin, et al.Research progress on thermal and non-thermal effects of microwaves in microwave chemistry[J].Chemical Bulletin, 2011, 74(1): 41-46. [5] 温卓宾.小型低功率微波等离子炬以及柱形微波炉腔体仿真设计[D].成都:电子科技大学, 2016. WEN Zhuobin.Simulation design of miniaturized low-power microwave plasma torch and cylindrical microwave cavity[D].Chengdu: University of Electronic Science and Technology of China, 2016. [6] 马祥梅,张明旭,闵凡飞,等.微波非热效应对有机硫化合物结构的影响[J].辐射研究与辐射工艺学报,2016,34(3):48-54. MA Xiangmei, ZHANG Mingxu, MIN Fanfei, et al.Influence of microwave non-thermal effects on the structure of organic sulfur compounds[J].Journal of Radiation Research and Radiation Technology, 2016, 34(3): 48-54. [7] 张庆军,刘文洁,隋宝宽,等.微波在渣油加氢催化中的应用[J].炼油技术与工程,2016,46(9):12-16. ZHANG Qingjun, LIU Wenjie, SUI Baokuan, et al.Application of microwave in catalytic hydrocracking of residue oil[J].Petroleum Refining Technology and Engineering,2016,46(9):12-16. [8] 胡志博.低阶煤极性基团的微波调控实验研究[D].哈尔滨:哈尔滨工业大学, 2016. HU Zhibo.Experimental study on microwave regulation of low-rank coal polar groups[D].Harbin: Harbin Institute of Technology,2016. [9] 于红,崔学锋,张瑞林.微波辐照作用对颗粒煤瓦斯解吸特性影响实验研究[J].中国安全生产科学技术,2017,13(10):25-29. YU Hong, CUI Xuefeng, ZHANG Ruilin.Experimental study on the influence of microwave irradiation on the gas desorption characteristics of particle coal[J].Journal of China Safety Production Science and Technology,2017,13(10):25-29. [10] CAI Yidong,LIU Dameng,YAO Yanbin,et al.Partial coal pyrolysis and its implication to enhance coalbed methane recovery,part Ⅰ:an experimental investigation[J].Fuel, 2014,132:12-19. [11] HONG Y D,LIN B Q,NIE W,et al.Microwave irradiation on pore morphology of coal powder[J].Fuel,2018,227:434-447. [12] 朱怡然.可控源微波辐射下煤体甲烷解吸特性研究[D].徐州:中国矿业大学(徐州), 2017. ZHU Yiran.Study on controllable microwave radiation-induced methane desorption characteristics of coal[D].Xuzhou: China University of Mining and Technology (Xuzhou), 2017. [13] LU Yi,LI He,LU Jiexin,et al.Clean up water blocking damage in coalbed methane reservoirs by microwave heating: laboratory studies[J].Process Safety and Environmental Protection, 2020, 138:292-299. [14] HUANG Jinxin,HU Guozhong,XU Guang,et al.The development of microstructure of coal by microwave irradiation stimulation[J].Journal of Natural Gas Science and Engineering,2019, 66:86-95. [15] HONG Yidu,LIN Baiquan,XIANG Hua,et al.Variable pore structure and gas permeability of coal cores after microwave irradiation[J].Geofluids,2018,2018:1-13. [16] 董鹏,陈志明,于伟.压裂后页岩油藏多裂缝直井产能模型:以鄂尔多斯盆地页岩油井为例[J].大庆石油地质与开发,2022,41(1):155-165. DONG Peng,CHEN Zhiming,YU Wei.Study on productivity model for multiple-fracture vertical well in shale oil reservoirs after fractured:a case of shale oil wells in Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2022,41(1):155-165. [17] 王林生,梁利喜,覃建华,等.玛湖砾岩油藏水平井压裂井间窜扰特征与机制分析[J].油气地质与采收率,2023,30(6):129-137. WANG Linsheng,LIANG Lixi,QIN Jianhua,et al.Characteristics and mechanism of inter-well interference in horizontal well fracturing in Mahu conglomerate reservoirs[J].Petroleum Geology & Recovery Efficiency,2023,30(6):129-137. [18] 徐泽昊,刘向君,梁利喜,等.砾岩油藏压裂裂缝遇砾扩展行为机理[J].油气地质与采收率,2023,30(3):115-127. XU Zehao,LIU Xiangjun,LIANG Lixi,et al. Propagation mechanism of fractures caused by hydraulic fracturing when encountering gravel in conglomerate reservoirs[J].Petroleum Geology & Recovery Efficiency,2023,30(3):115-127. [19] 蒋文超. 基于机器学习与模型融合的大庆油田 SN区块油井压裂效果预测技术[J].大庆石油地质与开发,2023,42(1):64-72. JIANG Wenchao. Prediction model for production well hydraulic fracturing effect of Block SN in Daqing Oilfield based on machine learning and model ensemble[J].Petroleum Geology & Oilfield Development in Daqing,2023,42(1):64-72. [20] 姜博明,穆朗枫,阎逸群,等. 基于非达西渗流和压力敏感性的页岩油压裂水平井产能计算方法[J].大庆石油地质与开发,2023,42(2):152-159. JIANG Boming,MU Langfeng,YAN Yiqun,et al. Calculation method of shale oil fractured horizontal well productivity based on non-Darcy and pressure sensitive features[J]. Petroleum Geology & Oilfield Development in Daqing,2023,42(2):152-159. [21] 闵超,张馨慧,杨兆中,等.基于CBFS-CV算法的煤层气井压裂效果主控因素识别[J].油气地质与采收率,2022,29(1):168-174. MIN Chao,ZHANG Xinhui,YANG Zhaozhong,et al.Identification of main controlling factors of fracturing performance in coalbed methane wells based on CBFS-CV algorithm[J].Petroleum Geology & Recovery Efficiency,2022,29(1):168-174. [22] 王光付,李凤霞,王海波,等. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质,2023,44(6):1378-1392. WANG Guangfu,LI Fengxia,WANG Haibo,et al. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin[J]. Oil & Gas Geology,2023,44(6):1378-1392. [23] 刘传喜,方文超,秦学杰.非常规油气藏压裂水平井动态缝网模拟方法及应用[J].石油与天然气地质,2022,43(3):696-702. LIU Chuanxi,FANG Wenchao,QIN Xuejie.Simulation of dynamic fracture network in fractured horizontal well for unconventional reservoirs:theory and application[J].Oil & Gas Geology,2022,43(3):696-702. [24] 赵金洲,付永强,王振华,等.页岩气水平井缝网压裂施工压力曲线的诊断识别方法[J]. 天然气工业, 2022, 42(2): 11-19. ZHAO Jinzhou, FU Yongqiang, WANG Zhenhua,et al.Study on diagnosis model of shale gas fracture network fracturing operation pressure curves[J]. Natural Gas Industry, 2022,42(2): 11-19. [25] 杨永华,宋燕高,王兴文,等.威荣页岩气田压裂实践与认识[J].石油实验地质,2023,45(6):1143-1150. YANG Yonghua,SONG Yangao,WANG Xingwen,et al.Practice and understanding of fracturing in Weirong shale gas field[J].Petroleum Geology & Experiment,2023,45(6):1143-1150. [26] 张廷强.滇东地区煤储层精细描述及影响因素分析[D].北京:中国地质大学(北京), 2017. ZHANG Tingqiang.Analysis of fine characterization and influencing factors of coal reservoirs in eastern Yunnan[D].Beijing: China University of Geosciences (Beijing), 2017. [27] 李美莹.弛豫频率对稠油微波降黏效果影响规律研究[D].西安:西安石油大学,2016. LI Meiying.Study on the effect of relaxation frequency on the microwave viscosity reduction of heavy oil[D]. Xi′an: Xi′an Shiyou University, 2016. [28] 李小刚,朱静怡,杨兆中,等.低渗透稠油微波原位加热开采数值模拟研究[J].特种油气藏,2020,27(6):120-126. LI Xiaogang,ZHU Jingyi,YANG Zhaozhong,et al.Numerical simulation study on in-situ microwave heating for low-permeability heavy oil production[J].Special Oil & Gas Reservoirs, 2020, 27(6): 120-126. [29] 管伟明,张紫昭.微波加热煤岩裂缝变形的电-热-固耦合模型[J].中国矿业,2015,24(7):133-136. GUAN Weiming, ZHANG Zizhao.Electro-thermal-mechanical coupling model for deformation of coal-rock fractures under microwave heating[J].China Mining Magazine,2015, 24(7): 133-136. [30] 杨康.力热耦合条件下煤岩变形特性与渗透机制研究[D].贵阳:贵州大学,2019. YANG Kang.Study on deformation characteristics and permeability mechanism of coal-rock under coupled action of force and heat[D].Guiyang: Guizhou University, 2019. |