[1] 裴发根,方慧,裴亮,等.天然气水合物电磁勘探研究进展[J].地球物理学进展,2020,35(2):775-785. PEI Fagen,FANG Hui,PEI Liang,et al.Advances in electromagnetic exploration research of gas hydrate[J].Progress in Geophysics,2020,35(2):775-785. [2] 魏纳,白睿玲,周守为,等.碳达峰目标下中国深海天然气水合物开发战略[J].天然气工业,2022,42(2):156-165. WEI Na,BAI Ruiling,ZHOU Shouwei,et al.China′s deepwater gas hydrate development strategies under the goal of carbon peak[J].Natural Gas Industry,2022,42(2):156-165. [3] REN J,CHENG C,XIONG P,et al.Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea[J].Journal of Petroleum Science and Engineering,2022,215:110630. [4] 周守为,李清平,朱军龙,等.中国南海天然气水合物开发面临的挑战与思考[J].天然气工业,2023,43(11):152-163. ZHOU Shouwei,LI Qingping,ZHU Junlong,et al.Challenges and considerations for the development of natural gas hydrates in South China Sea[J].Natural Gas Industry,2023,43(11):152-163. [5] 韩博华,王飞,刘倩茹,等.测井储层分类评价方法研究进展综述[J].地球物理学进展,2021,36(5):1966-1974. HAN Bohua,WANG Fei,LIU Qianru,et al.Review of research progress on evaluation of logging reservoir classification methods[J].Progress in Geophysics,2021,36(5):1966-1974. [6] 程超,李培彦,陈雁,等.基于机器学习的储层测井评价研究进展[J].地球物理学进展,2022,37(1):164-177. CHENG Chao,LI Peiyan,CHEN Yan,et al.Research progress of reservoir logging evaluation based on machine learning[J].Progress in Geophysics,2022,37(1):164-177. [7] 赵军,吴博深,武延亮,等.深层致密砂岩气藏有效储层的分类评价方法[J].西南石油大学学报(自然科学版),2022,44(2):31-39. ZHAO Jun,WU Boshen,WU Yanliang,et al.Classification and evaluation of effective reservoirs in deep tight sandstone gas reservoirsin[J].Journal of Southwest Petroleum University(Science & Technology Edition),2022,44(2):31-39. [8] 李春雷,曹小朋,张林凤,等.基于机器学习算法的水驱储层相渗曲线仿真预测[J].油气地质与采收率,2022,29(6):138-142. LI Chunlei,CAO Xiaopeng,ZHANG Linfeng,et al.Simulation and prediction of water-flooding reservoir relative permeability curve based on machine learning[J].Petroleum Geology and Recovery Efficiency,2022,29(6):138-142. [9] VAFERI B,ESLAMLOUEYAN R,AYATOLLAHI S.Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks[J].Journal of Petroleum Science and Engineering,2011,77(3/4):254-262. [10] GENG Z,HU X,DING N,et al.A pattern recognition modeling approach based on the intelligent ensemble classifier: application to identification and appraisal of water-flooded layers[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2019,233(7):737-750. [11] MOUSSA T,ELKATATNY S,MAHMOUD M,et al.Development of new permeability formulation from well log data using artificial intelligence approaches[J].Journal of Energy Resources Technology,2018,140(7):72903. [12] 刘凯,邹正银,王志章,等.基于机器学习的火山岩岩性智能识别及预测[J].特种油气藏,2022,29(1):38-45. LIU Kai,ZOU Zhengyin,WANG Zhizhang,et al.Intelligent identification and prediction of lithology of volcanic reservoirs based on machine learning[J].Special Oil & Gas Reservoirs,2022,29(1):38-45. [13] 韩珊,车明光,苏旺,等.四川盆地威远区块页岩气单井产量预测方法及应用[J].特种油气藏,2022,29(6):141-149. HAN Shan,CHE Mingguang,SU Wang,et al.Prediction method and application of single shale gas well production in Weiyuan Block,Sichuan Basin[J].Special Oil & Gas Reservoirs,2022,29(6):141-149. [14] DENG C,PAN H,FANG S,et al.Support vector machine as an alternative method for lithology classification of crystalline rocks[J].Journal of Geophysics and Engineering,2017,14(2):341-349. [15] PRADO E M G,DE SOUZA FILHO C R,CARRANZA E J M,et al.Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning:dealing with imbalanced training data[J].Ore Geology Reviews,2020,124:103611. [16] 路允乾,孟大江,文鹏飞,等.琼东南盆地北部天然气水合物重点矿体预测及定量评价[J].非常规油气,2023,10(6):18-26. LU Yunqian,MENG Dajiang,WEN Pengfei,et al.Prediction and quantitative evaluation of key ore bodies of natural gas hydrate in northern Qiongdongnan Basin[J].Unconventional Oil & Gas,2023,10(6):18-26. [17] QIN X,LU J,LU H,et al.Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea[J].China Geology,2020,3(2):210-220. [18] 马通,祝鹏,陈鸣,等.琼东南盆地天然气水合物储层参数测井评价及分析[J].断块油气田,2023,30(2):254-260. MA Tong,ZHU Peng,CHEN Ming,et al.Logging evaluation and analysis of reservoir parameter for natural gas hydrate in Qiongdongnan Basin[J].Fault-Block Oil & Gas Field,2023,30(2):254-260. [19] 彭英,李克文,朱应科,等.基于FL-XGBoost算法的砂泥岩识别方法——以胜利油田牛庄地区为例[J].油气地质与采收率,2023,30(1):76-85. PENG Ying,LI Kewen,ZHU Yingke,et al. FL-XGBoost algorithm-based method for identifying sandstone and mudstone:a case study of Niuzhuang Area in Shengli Oilfield[J].Petroleum Geology and Recovery Efficiency,2023,30(1):76-85. [20] 翟亮.基于XGBoost算法的吸水剖面预测方法研究与应用[J].油气地质与采收率,2022,29(1):175-180. ZHAI Liang.XGBoost-based water injection profile prediction method and its application[J].Petroleum Geology and Recovery Efficiency,2022,29(1):175-180. [21] CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE: synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357. [22] FAHRUDIN T,BULIALI J L,FATICHAH C.Enhancing the performance of smote algorithm by using attribute weighting scheme and new selective sampling method for imbalanced data set[J].International Journal of Innovative Computing, Information and Control,2019,15(2):423-444. [23] TU B, ZHOU C, KUANG W,et al.Hyperspectral imagery noisy label detection by spectral angle local outlier factor[J].IEEE Geoscience and Remote Sensing Letters,2018,15(9):1417-1421. [24] ZHU Q, FENG J, HUANG J.Natural neighbor:a self-adaptive neighborhood method without parameter K[J].Pattern Recognition Letters,2016,100(80):30-36. [25] HOSSIN M,SULAIMAN M N.A review on evaluation metrics for data classification evaluations[J].International Journal of Data Mining & Knowledge Management Process,2015,5(2):1-11. [26] 黄时卓,李芳,宋鹏,等.琼东南盆地超深水浅部气藏地球物理识别技术[J].地球科学,2024,49(1):313-323. HUANG Shizhuo,LI Fang,SONG Peng,et al.Geophysical identification technology of ultra deep water and shallow gas reservoirs in Qiongdongnan Basin[J].Earth Science,2024,49(1):313-323. |