特种油气藏 ›› 2025, Vol. 32 ›› Issue (1): 98-105.DOI: 10.3969/j.issn.1006-6535.2025.01.011

• 油藏工程 • 上一篇    下一篇

潜山油藏CO2重力混相驱作用机制与驱油实验

郭发军1, 梁飞2, 陈洪1, 齐桓3,4, 曾庆桥1, 王睿思1, 李宜强3,4, 吴永恩3,4   

  1. 1.中国石油华北油田分公司,河北 沧州 061000;
    2.中国石油辽河油田分公司,辽宁 盘锦 124000;
    3.中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249;
    4.中国石油大学(北京)石油工程学院,北京 102249
  • 收稿日期:2023-12-06 修回日期:2024-11-11 出版日期:2025-02-25 发布日期:2025-05-13
  • 作者简介:郭发军(1971—),男,教授级高级工程师,1995年毕业于成都理工学院石油工程专业,现主要从事油气田开发技术研究工作。
  • 基金资助:
    中国石油科技项目“华北八里西潜山油藏碳驱油碳埋存先导试验”(2023YQX10407ZK)

Mechanism of CO2 gravity miscible displacement and oil displacement experiment in buried hill reservoirs

GUO Fajun1, LIANG Fei2, CHEN Hong1, QI Huan3,4, ZENG Qingqiao1, WANG Ruisi1, LI Yiqiang3,4, WU Yongen3,4   

  1. 1. PetroChina Huabei Oilfield Company,Cangzhou,Hebei 061000, China;
    2. PetroChina Liaohe Oilfield Company,Panjin,Liaoning 124000, China;
    3. State Key Laboratory of Oil and Gas Resources and Engineering,China University of Petroleum (Beijing),Beijing 102249, China;
    4. College of Petroleum Engineering,China University of Petroleum (Beijing),Beijing 102249, China
  • Received:2023-12-06 Revised:2024-11-11 Online:2025-02-25 Published:2025-05-13

摘要: 针对冀中坳陷八里西裂缝型潜山油藏实施CO2重力驱作用机理不明的问题,综合考虑储层特征及开发现状,开展注气膨胀、岩心驱替及核磁扫描实验,探讨储层流体与CO2间的相互作用机制,研究油藏底部注水后实施CO2重力驱效果,明确孔、缝储集空间内原油的动用规律。研究表明:注入CO2后,原油黏度降低57%,体积膨胀1.83倍,CO2具有较好的原油降黏膨胀效果;PVT实验结果表明,水相的存在几乎不影响原油与CO2间的相互作用;在油气传质过程中CO2可萃取、抽提出油中的C2—C12组分,利于轻质组分的采出,较重组分(C10—C36+)滞留其中;油藏底部注水后实施CO2重力驱能够进一步提高原油采收率,油气传质程度与注气速度均会影响驱油效果,油气传质程度越强、注入速度越低,越能发挥CO2萃取、抽提与溶解能力,充分动用连片剩余油以及与CO2未直接接触的剩余油;根据核磁实验结果可将储集空间划分为孔隙空间和裂缝空间,与CO2非混相驱相比,水驱后CO2重力混相驱能够提高基质与裂缝中原油的采出程度,混相驱2.0倍孔隙体积后,基质部分采出程度为49.3%,裂缝部分采出程度为99.3%。现场实践表明,顶部注CO2重力混相驱油是八里西潜山油藏有效提高采收率的接替开发手段。

关键词: CO2重力混相驱, CCUS, 潜山油藏, 作用机制, 驱油特征, 在线核磁

Abstract: To address the unclear mechanism of CO2 gravity flooding implemented in Balixi fracture-type buried hill reservoir,this paper,considering the reservoir characteristics and development status,explored the interaction mechanisms between reservoir fluids and CO2 through the gas injection expansion,core displacement,and NMR scanning experiments,and studied the effect of CO2 gravity flooding after water injection at the bottom of the reservoir,clarifying the production patterns of crude oil within the pore and fracture reservoir spaces.The study shows that:after the injection of CO2,the viscosity of crude oil is reduced by 57%,and its volume is expanded by a factor of 1.83,indicating that CO2 has a significant effect on reducing the viscosity and expanding the volume of crude oil.The results of PVT (Pressure-Volume-Temperature) experiments indicate that the presence of a water phase has almost no effect on the interaction between crude oil and CO2.During the oil-gas mass transfer process,CO2 can extract and strip the C2-C12 components from the oil,which is conducive to the recovery of lighter fractions,while heavier fractions (C10-C36+) remain in place.Implementing CO2 gravity miscible displacement after water injection at the bottom of the reservoir can further enhance the recovery of crude oil.Both the degree of oil-gas mass transfer and the gas injection rate affect the oil displacement efficiency.The stronger the degree of oil-gas mass transfer and the lower the injection rate,the more effectively CO2 can extract,strip,and dissolve,thereby fully producing the contiguous remaining oil and the remaining oil that has not been in direct contact with CO2.Based on NMR experiment results,the reservoir space can be divided into pore space and fracture space.Compared with CO2 non-miscible flooding,CO2 gravity miscible flooding after water flooding can improve the recovery from both matrix and fractures.After miscible flooding of twice the pore volume,the recovery from the matrix is 49.3%,and that from the fractures is 99.3%.Field practice has demonstrated that top-injected CO2 gravity miscible displacement is an effective means of succession development for enhancing oil recovery in the Balixi buried hill reservoir.

Key words: CO2 gravity miscible displacement, CCUS, buried hill reservoir, mechanism, oil displacement characteristics, online NMR

中图分类号: