特种油气藏 ›› 2025, Vol. 32 ›› Issue (2): 89-94.DOI: 10.3969/j.issn.1006-6535.2025.02.011

• 油藏工程 • 上一篇    下一篇

水-甲烷-二氧化碳-碳系统润湿性的分子模拟研究

雍唯1,2, 未志杰1,2, 刘玉洋1,2, 王德强1,2, 崔永正1,2, 张健1,2, 周文胜1,2   

  1. 1.海洋油气高效开发全国重点实验室,北京 100028;
    2.中海油研究总院有限责任公司,北京 100028
  • 收稿日期:2024-07-27 修回日期:2025-02-20 出版日期:2025-04-25 发布日期:2025-06-16
  • 通讯作者: 未志杰(1984—),男,高级工程师,2003年毕业于北京大学力学专业,2013年毕业于该校能源动力与资源工程学院力学专业,获博士学位,现主要从事海上油田提高采收率技术研究。
  • 作者简介:雍唯(1994—),男,工程师,2016年毕业于西南石油大学石油工程专业,2021年毕业于英国阿伯丁大学石油工程专业,获博士学位,现主要从事油藏润湿性分子模拟、聚合物驱提高采收率等方面的研究工作。
  • 基金资助:
    国家自然科学基金面上项目“基于非均衡理论的海上稠油化学驱大幅提高采收率关键问题研究”(52074347)

Molecular simulation of wettability of water-methane-carbon dioxide-carbon system

YONG Wei1,2, WEI Zhijie1,2, LIU Yuyang1,2, WANG Deqiang1,2, CUI Yongzheng1,2, ZHANG Jian1,2, ZHOU Wensheng1,2   

  1. 1. National Key Laboratory of Efficient Offshore Oil and Gas Development, Beijing 100028, China;
    2. CNOOC Research Institute Co., Ltd., Beijing 100028, China
  • Received:2024-07-27 Revised:2025-02-20 Online:2025-04-25 Published:2025-06-16

摘要: 针对分子尺度下润湿性研究难以开展的问题,运用分子模拟方法,探究了页岩纳米孔隙中液滴与甲烷-二氧化碳-碳系统相互作用后的润湿性表现(润湿性通过表面张力和润湿角表征)。结果表明:CO2分子数占比XCO2对CH4-CO2-H2O系统表面张力γ影响显著,γ随温度上升和XCO2增加而降低,降幅最高约40%。进一步得到液滴润湿角随CH4和CO2压力的变化曲线,发现在CH4环境中压力超过78 MPa时,液滴脱离固体表面,形成180°润湿角,此时页岩孔隙表面达到完全疏水状态,而在CO2环境中,页岩表面完全疏水的对应压力为12 MPa,模拟结果与相关实验数据一致。与CH4相比,CO2与页岩表面有着更强的相互作用,从而置换出附着在固体表面的CH4,提高了气体采收率。对于CH4-CO2混合物,润湿角则与CO2分子数占比成线性正相关的关系。研究成果可为揭示润湿性与页岩提高采收率之间的关系提供理论指导。

关键词: 水-甲烷-二氧化碳-碳系统, 润湿性, 接触角, 分子模拟, 提高采收率, 页岩

Abstract: To address the difficulty in conducting wettability studies at the molecular scale,molecular simulation methods were employed to investigate the wettability behavior of droplets in shale nanopores after interaction with the methane-carbon dioxide-carbon system (wettability was characterized by surface tension and contact angle).The results show that the proportion of CO2 molecules, XCO2,significantly affects the surface tension γ of the CH4-CO2-H2O system.The surface tension γ decreases with increasing temperature and XCO2,with a maximum reduction of approximately 40%.Further analysis revealed the variation of droplet contact angle with changes in CH4 and CO2 pressure.It was found that in a CH4 environment,when the pressure exceeds 78 MPa,the droplet detaches from the solid surface,forming a contact angle of 180°,indicating that the shale pore surface reaches a completely hydrophobic state. In a CO2 environment,the corresponding pressure for the shale surface to become completely hydrophobic is 12 MPa.The simulation results are consistent with relevant experimental data. Compared to CH4, CO2 exhibits stronger interaction with the shale surface, thereby displacing CH4 attached to the solid surface and enhancing gas recovery.For CH4-CO2 mixtures, the contact angle shows a linear positive correlation with the proportion of CO2 molecules.The research findings provide theoretical guidance on the relationship between wettability and enhanced recovery in shale.

Key words: water-methane-carbon dioxide-carbon system, wettability, contact angle, molecular modeling, enhanced recovery, shale

中图分类号: