特种油气藏 ›› 2025, Vol. 32 ›› Issue (3): 168-174.DOI: 10.3969/j.issn.1006-6535.2025.03.020

• 钻采工程 • 上一篇    

螺杆钻具十字万向轴瓣齿裂纹扩展规律

刘书杰1, 马传华1, 叶道辉2, 肖平2, 关勤勤2, 张锐尧2   

  1. 1.中海油海南能源有限公司,海南 海口 570100;
    2.中国石化江钻石油机械有限公司,湖北 武汉 430073
  • 收稿日期:2024-06-21 修回日期:2025-02-15 出版日期:2025-06-25 发布日期:2025-07-08
  • 通讯作者: 张锐尧(1991—),男,高级工程师,2015年毕业于长江大学机械设计制造及其自动化专业,2022年毕业于中国石油大学(北京)油气井工程专业,获博士学位,现从事井下工具研发、控压钻井和大数据分析等工作。
  • 作者简介:刘书杰(1966—),男,教授级高级工程师,博士生导师,1989年毕业于石油大学(华东)钻井工程专业,2016年毕业于中国石油大学(北京)安全技术及工程专业,获博士学位,现从事海洋石油钻完井研究及管理工作。
  • 基金资助:
    国家重点研发计划“3 000米级深海油气钻探关键技术与装备研究”(2022YFC2806500);国家自然科学基金联合基金“海相深层高温高压钻完井工程基础理论及控制方法”(U19B6003-05)

Crack propagation pattern of the petal teeth of the cardan universal joint for screw drilling tools

LIU Shujie1, MA Chuanhua1, YE Daohui2, XIAO Ping2, GUAN Qinqin2, ZHANG Ruiyao2   

  1. 1. CNOOC Hainan Energy Co., Ltd, Haikou, Hainan 570100, China;
    2. Sinopec Jiangzuan Petroleum Machinery Co., Ltd, Wuhan, Hubei 430073, China
  • Received:2024-06-21 Revised:2025-02-15 Online:2025-06-25 Published:2025-07-08

摘要: 为了解决螺杆钻具十字万向轴在井下复杂载荷条件下瓣齿易断裂、使用寿命短的问题,提出了梯形、矩形或扇形的瓣齿截面结构优化方案,基于断裂理论和裂纹扩展数值模拟方法,建立了虚拟裂纹扩展仿真物理模型,研究了裂纹分别位于瓣齿根部左侧(Ⅰ区)、中间(Ⅱ区)、右侧(Ⅲ区)时,原结构与优化结构在裂纹区域的等效应力与裂纹应力强度因子分布规律,并开展现场测试对优化结构的使用效果进行了验证。研究表明:当裂纹分布在Ⅰ、Ⅱ、Ⅲ区时,优化结构均可以减小裂纹尖端等效应力与应力强度因子,裂纹扩展能力平均降低18.6%、16.2%、12.1%,其中,矩形截面强化结构为最优方案。裂纹位于瓣齿根部Ⅱ区时,裂纹尖端应力最大,扩展能力也最强;当裂纹位于瓣齿根部Ⅰ区时,裂纹尖端应力最小,裂纹扩展能力最弱,当裂纹位于瓣齿根部Ⅲ区时,扩展能力居于两者之间。现场测试结果验证了优化结构的可靠性,平均使用寿命可提升18.77%。该研究可为十字万向轴瓣齿的寿命预测与结构优化提供借鉴。

关键词: 螺杆钻具, 十字万向轴, 瓣齿优化, 断裂, 裂纹扩展, 应力强度因子

Abstract: To address the issue of easy petal tooth fracture and short service life of the cardan universal joint for screw drilling tools under complex downhole load conditions, optimization schemes for petal tooth cross-sectional structures in the form of trapezoidal, rectangular, or fan-shaped were proposed. Based on fracture theory and numerical simulation methods for crack propagation, a virtual crack propagation simulation physical model was established. The distribution patterns of equivalent stress and crack stress intensity factors in the crack area were studied for the original and optimized structures when cracks were located on the left (zone Ⅰ), middle (zone Ⅱ), and right (zone Ⅲ) of the petal tooth root. Furthermore, field tests were conducted to verify the effectiveness of the optimized structure. The study shows that when cracks were distributed in zones Ⅰ,Ⅱ, or Ⅲ, the optimized structure could reduce the equivalent stress and stress intensity factor at the crack tip, with the average crack propagation capability decreasing by 18.6%, 16.2%, and 12.1% respectively. Among them, the rectangular cross-section reinforcement structure was the optimal solution. When cracks were located in thezone Ⅱpetal tooth root, the stress at the crack tip was the highest, and the propagation capability was the strongest; when cracks were located in the zone Ⅰ petal tooth root, the stress at the crack tip was the lowest, and the crack propagation capability was the weakest; when cracks were located in the zone Ⅱ petal tooth root, the propagation capability was between the two. Field test results verified the reliability of the optimized structure, with an average service life increase of 18.77%. This study can provide a reference for the life prediction and structural optimization of cardan universal joint petal teeth.

Key words: screw drilling tools, cardan universal joint, petal tooth optimization, fracture, crack pattern, stress intensity factor

中图分类号: