特种油气藏 ›› 2025, Vol. 32 ›› Issue (2): 51-58.DOI: 10.3969/j.issn.1006-6535.2025.02.006

• 地质勘探 • 上一篇    下一篇

气测录井高重烃组分异常特征及流体性质快速识别方法

胡益涛1, 曾烃详2, 陈沛3, 钟鹏3, 付群超1, 柴华1, 杜坤2   

  1. 1.中法渤海地质服务有限公司湛江分公司,广东 湛江 524057;
    2.南方海洋科学与工程广东省实验室(湛江),广东 湛江 524057;
    3.中海石油(中国)有限公司湛江分公司,广东 湛江 524057
  • 收稿日期:2024-05-25 修回日期:2025-01-02 出版日期:2025-04-25 发布日期:2025-06-16
  • 通讯作者: 曾烃详(1996—),男,2019年毕业于嘉应学院地理信息科学专业,2023年毕业于长江大学地球化学专业,获硕士学位,现从事有机地球化学、海上油气田录井综合解释研究工作。
  • 作者简介:胡益涛(1984—),男,高级工程师,2008年毕业于长江大学地球物理学专业,现从事录井科研和生产管理工作。
  • 基金资助:
    中海油“十四五”重大科技项目“海上深层/超深层油气勘探技术”(KJGG2022-0405);中海石油(中国)有限公司综合科研课题“双孔介质储层测录井综合评价技术与作业方案优化研究”(YXKY-2021-ZJ-01)

Anomaly characterization of high heavy hydrocarbon fractions and rapid identification method of fluid properties in gas logging

HU Yitao1, ZENG Tingxiang2, CHEN Pei3, ZHONG Peng3, FU Qunchao1, CHAI Hua1, DU Kun2   

  1. 1. Zhanjiang Branch, China France Bohai Geoservices Co., Ltd., Zhanjiang, Guangdong 524057, China;
    2. Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524057, China;
    3. Zhanjiang Branch, CNOOC (China) Co., Ltd., Zhanjiang, Guangdong 524057, China
  • Received:2024-05-25 Revised:2025-01-02 Online:2025-04-25 Published:2025-06-16

摘要: 近年来,南海西部油田部分探井陆续出现“高重烃组分,低轻烃组分”的气测异常,针对此类高重烃组分气测异常特征认识不清、形成机理不明及流体性质识别难等问题,对研究区气测组分异常数据进行统计并分析其产生原因,开展基于机器学习的分类预测模型识别流体性质研究。研究表明:此类气测异常主要原因是油藏早期形成后受到改造或破坏,油气发生二次运移,期间轻烃组分损失较多,而重烃组分损失较少;高重烃组分气测异常的烃组分受地质构造变化程度、盖层封堵性、原油性质等综合影响;随机森林模型在研究区高重烃组分气测数据集上训练及预测分类效果好,能准确、高效识别流体性质。该研究从气测录井技术角度为油藏流体识别提供新思路,对油气勘探开发具有重要的指导意义。

关键词: 气测录井, 烃组分, 气测组分, 次生油藏, 机器学习

Abstract: In recent years, some exploratory wells in the western South China Sea oilfields have successively shown gas logging anomalies characterized by high heavy hydrocarbon fractions and low light hydrocarbon fractions. To address the issues of unclear understanding of the characteristics, unclear formation mechanisms, and difficulties in fluid property identification for such high heavy hydrocarbon fraction gas logging anomalies, statistical analysis was conducted on the gas logging fraction anomaly data in the study area to identify the causes of these anomalies, and research was also carried out on the identification of fluid properties using machine learning classification and prediction models. The analysis suggests that the main reason for these gas logging anomalies is the stimulation or destruction of oil reservoirs after their early formation, leading to secondary migration of oil and gas, during which light hydrocarbon fractions are lost in larger amounts, while heavy hydrocarbon fractions are lost less. The heavy hydrocarbon fraction gas logging anomalies are influenced by a combination of factors, including the degree of geological structural changes, the sealing properties of the cap rock and the properties of the crude oil. The random forest model demonstrates good training and predictive classification performance on the high heavy hydrocarbon fraction gas logging data set in the study area accurately and efficiently identifying fluid properties. This study provides a new approach from the perspective of gas logging technology for identifying reservoir stimulations and has significant guiding implications for oil and gas exploration and development.

Key words: gas logging, hydrocarbon fraction, gas logging fraction, secondary reservoir, machine learning

中图分类号: