特种油气藏 ›› 2023, Vol. 30 ›› Issue (6): 1-9.DOI: 10.3969/j.issn.1006-6535.2023.06.001

• 综述 •    下一篇

纳米流体相渗曲线研究进展

屈鸣1, 孙海童2, 梁拓3, 闫婷4, 侯吉瑞2, 焦红岩5, 邓嵩6, 杨二龙7   

  1. 1.东北石油大学三亚海洋油气研究院,海南 三亚 572024;
    2.中国石油大学(北京),北京 102249;
    3.西安石油大学,陕西 西安 213164;
    4.中国石油长庆油田分公司,西安 陕西 710018;
    5. 中国石化胜利油田分公司,山东 东营 257068;
    6.常州大学,江苏 常州 213164;
    7.东北石油大学教育部提高油气采收率重点实验室,黑龙江 大庆 163319
  • 收稿日期:2022-09-18 修回日期:2023-09-21 出版日期:2023-12-25 发布日期:2024-01-19
  • 通讯作者: 侯吉瑞(1965—),男,研究员,1987年毕业于延边大学化学专业,2007年毕业于大连理工大学应用化学专业,获博士学位,现从事油田化学及提高采收率方面的研究工作。
  • 作者简介:屈鸣(1988—),男,教授,2011年毕业于中国矿业大学(北京)安全工程专业,2020年毕业于中国石油大学(北京)油气田开发工程专业,获博士学位,现主要从事油田化学与提高采收率方面的研究工作。
  • 基金资助:
    国家自然科学基金“低渗特低渗油藏片状纳米材料-微米自适应桥接颗粒协同控窜-调流-驱油理论研究”(52174046);中国石油科技创新基金“特低渗油藏智能片状纳米材料调驱作用机理研究”(2021DQ02-0202)

Research Progress of Nanofluid Phase Permeability Curves

Qu Ming1, Sun Haitong2, Liang Tuo3, Yan Ting4, Hou Jirui2, Jiao Hongyan5, Deng Song6, Yang Erlong7   

  1. 1. NEPU Sanya Offshore Oil & Gas Research Institute, Sanya, Hainan 572024, China;
    2. China University of Petroleum (Beijing), Beijing 102249, China;
    3. Xi'an Shiyou University, Xi'an Shaanxi 213164, China;
    4. PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710018, China;
    5. Sinopec Shengli Oilfield Company, Dongying, Shandong 257068, China;
    6. Changzhou University, Changzhou, Jiangsu 213164, China;
    7. Key Laboratary for Improving Oil and Gas Recovery (Northeast Petroleum University), Ministry of Education, Daqing, Heilongjiang 163319, China
  • Received:2022-09-18 Revised:2023-09-21 Online:2023-12-25 Published:2024-01-19

摘要: 纳米颗粒具有尺寸极小、比表面积极大且用量极少等特点,被广泛用于油气藏开发,但有关纳米流体相渗曲线的研究鲜有报道。因此,通过文献调研,综述了毛管数、润湿性、温度及净有效压力等因素对纳米流体驱前后相渗曲线形状的影响,对构建相渗曲线的数学模型方法进行总结和讨论,并结合纳米流体特性优选了适用于纳米流体的相渗曲线获取方法。该研究可为纳米流体相渗曲线的准确获取、相渗数值模型的建立及纳米流体驱油机理的深入研究提供一定的理论参考和指导。

关键词: 低渗透油藏, 纳米流体, 相对渗透率曲线, 数学模型

Abstract: Nanoparticles are widely used in oil and gas reservoir development because of their extremely small size, large specific surface area and low dosage, but little research has been reported on the phase permeability curves of nanofluids. Therefore, through literature research, the effects of factors such as the number of capillary, wettability, temperature and net effective pressure on the shape of phase permeability curves before and after the oil displacement by nanofluids are reviewed, the mathematical modeling methods for constructing the phase permeability curves are summarized and discussed, and the method of obtaining phase permeability curves that is applicable to nanofluids is preferred in combination with the characteristics of nanofluids. This study can provide certain theoretical references and guidance for the accurate acquisition of phase permeability curves of nanofluids, the establishment of numerical models of phase permeability and the in-depth study of the mechanism of oil displacement by nanofluids.

Key words: low-permeability reservoir, nanofluid, relative permeability curve, mathematical modeling

中图分类号: