特种油气藏 ›› 2025, Vol. 32 ›› Issue (4): 58-67.DOI: 10.3969/j.issn.1006-6535.2025.04.007

• 地质勘探 • 上一篇    下一篇

基于改进Stacking算法的碳酸盐岩储层测井岩性识别方法与应用

罗水亮1, 漆影强1, 唐松2, 阮基富2, 高达1, 刘乾乾1, 李生1   

  1. 1.长江大学,湖北 武汉 430100;
    2.中国石油西南油气田分公司,四川 遂宁 629001
  • 收稿日期:2024-11-14 修回日期:2025-05-06 出版日期:2025-08-25 发布日期:2025-09-03
  • 作者简介:罗水亮(1974—),男,副教授,1998年毕业于江汉石油学院应用地球物理专业,2009年毕业于中国石油大学(华东)地质资源与地质工程专业,获博士学位,现主要从事开发地质方面的研究工作。
  • 基金资助:
    国家自然科学基金青年基金“塔中地区晚奥陶世碳酸盐台地边缘沉积演化及其对古构造和海平面变化的响应”(41502104)

Lithology logging identification method and application to carbonate reservoirs based on improved Stacking algorithm

LUO Shuiliang1, QI Yingqiang1, TANG Song2, RUAN Jifu2, GAO Da1, LIU Qianqian1, LI Sheng1   

  1. 1. Yangtze University, Wuhan, Hubei 430100, China;
    2. PetroChina Southwest Oil & Gas Field Company, Suining, Sichuan 629001, China
  • Received:2024-11-14 Revised:2025-05-06 Online:2025-08-25 Published:2025-09-03

摘要: 针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂岩性的识别准确性和稳定性。相比传统方法,该模型能够更有效地捕捉测井数据的非线性关系,并降低不同岩性类别间的预测混淆度。研究结果表明:该方法在四川盆地川中地区碳酸盐岩储层的岩性识别精度达到96%,较传统模型提升6个百分点,且平均相对误差更低,预测效果更优。改进的Stacking算法结合高效计算框架,可显著提升训练和预测效率,使岩性识别更加高效、可靠。该方法可有效地识别复杂岩性,为碳酸盐岩储层岩性识别提供参考。

关键词: Stacking, 集成学习, 特征加权, 碳酸盐岩, 岩性识别

Abstract: Conventional lithology identification methods for carbonate reservoirs in the Central Sichuan Area have low accuracy and weak model generalization. To address this, a lithology identification method in well logging based on an improved Stacking algorithm is proposed. This method integrates the advantages of multiple machine learning models, optimizes feature weighting strategies, and enhances the extraction of key information from logging curves, improving the accuracy and stability of complex lithology identification. Compared to traditional methods, it better captures the nonlinear relationships in logging data and reduces prediction confusion between lithology categories. The study results show that the accuracy of this method in identifying lithologies in central Sichuan carbonate reservoirs reaches 96%, an improvement of over 6 percentage point compared to traditional models. It also has lower average relative errors and better prediction performance. Combined with an efficient computing framework, the improved Stacking algorithm significantly enhances training and prediction efficiency, making lithology identification both efficient and reliable. This method effectively identifies complex lithologies and provides a valuable reference for carbonate reservoir lithology identification.

Key words: Stacking, ensemble learning, feature weighting, carbonate, lithology identification

中图分类号: