[1] 祝启康,林伯韬,杨光,等.低压低产页岩气井智能生产优化方法[J].石油勘探与开发,2022,49(4):770-777. ZHU Qikang,LIN Botao,YANG Guang,et al.Intelligent production optimization method for a low pressure and low productivity shale gas well[J].Petroleum Exploration and Development,2022,49(4):770-777. [2] 刘巍,刘威,谷建伟.基于机器学习方法的油井日产油量预测[J].石油钻采工艺,2020,42(1):70-75. LIU Wei,LIU Wei,GU Jianwei.Oil production prediction based on a machine learning method[J].Oil Drilling & Production Technology,2020,42(1):70-75. [3] ARPS J J.Analysis of decline curves[J].Transactions of the AIME,1945,160(1):228-247. [4] DUONG A N.Rate-decline analysis for fracture-dominated shale reservoirs[C].SPE137748,2014:377-387. [5] LIANG Bin,LIU Jiang,YOU Junyu,et al.Hydrocarbon production dynamics forecasting using machine learning:a state-of-the-art review[J].Fuel,2023,337:127067. [6] 谢坤,吴湛奇,李彦阅,等.机器学习在油气开发领域的应用及展望[J].西安石油大学学报(自然科学版),2023,38(5):58-67. XIE Kun,WU Zhanqi,LI Yanyue,et al.Application of machine learning in oil and gas development field and its prospect[J].Journal of Xi′an Shiyou University(Natural Science Edition),2023,38(5):58-67. [7] SIRCAR A,YADAV K,RAYAVARAPU K,et al.Application of machine learning and artificial intelligence in oil and gas industry[J].Petroleum Research,2021,6(4):379-391. [8] 何佑伟,贺质越,汤勇,等.基于机器学习的页岩气井产量评价与预测[J].石油钻采工艺,2021,43(4):518-524. HE Youwei,HE Zhiyue,TANG Yong,et al.Shale gas well production evaluation and prediction based on machine learning[J].Oil Drilling & Production Technology,2021,43(4):518-524. [9] 孔鹏,李忠城,杨晨曦,等.基于PCA-NB方法的煤层气井压后产量预测研究[J].特种油气藏,2019,26(6):108-112. KONG Peng,LI Zhongcheng,YANG Chenxi,et al.Production forecast of fractured coalbed methane wells based on PCA-NB method[J].Special Oil & Gas Reservoirs,2019,26(6):108-112. [10] LIU Yazhou,ZENG Jianhui,QIAO Juncheng,et al.An advanced prediction model of shale oil production profile based on source-reservoir assemblages and artificial neural networks[J].Applied Energy,2023,333:120604. [11] 谷建伟,周梅,李志涛,等.基于数据挖掘的长短期记忆网络模型油井产量预测方法[J].特种油气藏,2019,26(2):77-81,131. GU Jianwei,ZHOU Mei,LI Zhitao,et al.Oil well production forecast with long- short term memory network model based on data mining[J].Special Oil & Gas Reservoirs,2019,26(2):77-81,131. [12] DUQUE M C M A,CHAVES G S,MONTEIRO D O,et al.Machine learning models to automatically validate petroleum production tests[C].SPE199112-MS,2020:1-5. [13] 匡立春,刘合,任义丽,等.人工智能在石油勘探开发领域的应用现状与发展趋势[J].石油勘探与开发,2021,48(1):1-11. KUANG Lichun,LIU He,REN Yili,et al.Application and development trend of artificial intelligence in petroleum exploration and development[J].Petroleum Exploration and Development,2021,48(1):1-11. [14] LI Hong,YU Haiyang,CAO Nai,et al.Applications of artificial intelligence in oil and gas development[J].Archives of Computational Methods in Engineering,2021,28(3):937-949. [15] GOODFELLOW I,BENGIO Y,COURVILLE A.Deep learning[M].Cambridge:MIT press,2016:13-52. [16] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [17] LEE K,LIM J,YOON D,et al.Prediction of shale-gas production at Duvernay Formation using deep-learning algorithm[J].SPE Journal,2019,24(6):2423-2437. [18] FARGALLA M A M,YAN Wei,DENG Jingen,et al.TimeNet:Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs[J].Energy,2024,290:130184. [19] ZHANG Lei,DOU Hongen,WANG Hongliang,et al.Neural network optimized by genetic algorithm for predicting single well production in high water cut reservoir[C].IEEE9513395,2021:297-306. [20] 王金甲,周雅倩,郝智.基于注意力模型的多传感器人类活动识别[J].计量学报,2019,40(6):958-969. WANG Jinjia,ZHOU Yaqian,HAO Zhi.Multi-sensor human activity recognition based on attention model[J].Acta Metrologica Sinica,2019,40(6):958-969. [21] ALOMAIR O A,GARROUCH A A.A general regression neural network model offers reliable prediction of CO2 minimum miscibility pressure[J].Journal of Petroleum Exploration and Production Technology,2016,6(3):351-365. [22] ASANTE J,AMPOMAH W,TU Jiawei,et al.Data-driven modeling for forecasting oil recovery:a timeseries neural network approach for tertiary CO2 WAG EOR[J].Geoenergy Science and Engineering,2024,233:212555. [23] MAHZARI P,EMAMBAKHSH M,TEMIZEL C,et al.Oil production forecasting using deep learning for shale oil wells under variable gas-oil and water-oil ratios[J].Petroleum Science and Technology,2022,40(4):445-468. [24] GUO Zixi,ZHAO Jinzhou,YOU Zhenjiang,et al.Prediction of coalbed methane production based on deep learning[J].Energy,2021,230:120847. [25] 刘合,李艳春,杜庆龙,等.基于多变量时间序列模型的高含水期产量预测方法[J].中国石油大学学报(自然科学版),2023,47(5):103-114. LIU He,LI Yanchun,DU Qinglong,et al.Prediction of production during high water-cut period based on multivariate time series model[J].Journal of China University of Petroleum(Edition of Natural Sciences),2023,47(5):103-114. [26] WANG Hongliang,MU Longxin,SHI Fugeng,et al.Production prediction at ultra-high water cut stage via recurrent neural network[J].Petroleum Exploration and Development,2020,47(5):1084-1090. [27] YANG Ruiyue,QIN Xiaozhou,LIU Wei,et al.A physics-constrained data-driven workflow for predicting coalbed methane well production using artificial neural network[J].SPE Journal,2022,27(3):1531-1552. [28] LI Xuechen,MA Xinfang,XIAO Fengchao,et al.A physics-constrained long-term production prediction method for multiple fractured wells using deep learning[J].Journal of Petroleum Science and Engineering,2022,217:110844. [29] 张弘斌,袁奇,赵柄锡,等.采用多通道样本和深度卷积神经网络的轴承故障诊断方法[J].西安交通大学学报,2020,54(8):58-66. ZHANG Hongbin,YUAN Qi,ZHAO Bingxi,et al.Bearing fault diagnosis with multi-channel sample and deep convolutional neural network[J].Journal of Xi′an Jiaotong University,2020,54(8):58-66. [30] PAN Shaowei,YANG Bo,WANG Shukai,et al.Oil well production prediction based on CNN-LSTM model with self-attention mechanism[J].Energy,2023,284:128701. [31] ZHOU Wei,LI Xiangchengzhen,QI Zhongli,et al.A shale gas production prediction model based on masked convolutional neural network[J].Applied Energy,2024,353:122092. [32] 张蕾,窦宏恩,王天智,等.基于集成时域卷积神经网络模型的水驱油田单井产量预测方法[J].石油勘探与开发,2022,49(5):996-1004. ZHANG Lei,DOU Hongen,WANG Tianzhi,et al.A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model[J].Petroleum Exploration and Development,2022,49(5):996-1004. [33] SYED F I,ALNAQBI S,MUTHER T,et al.Smart shale gas production performance analysis using machine learning applications[J].Petroleum Research,2022,7(1):21-31. [34] ZHA Wenshu,LIU Yuping,WAN Yujin,et al.Forecasting monthly gas field production based on the CNN-LSTM model[J].Energy,2022,260:124889. [35] ZHANG Lei,DOU Hongen,ZHANG Kun,et al.CNN-LSTM model optimized by Bayesian optimization for predicting single-well production in water flooding reservoir[J].Geofluids,2023,2023:5467956. [36] 李媛,郭大立,康芸玮.融合注意力机制的煤层气产量动态预测[J].科学技术与工程,2023,23(2):550-557. LI Yuan,GUO Dali,KANG Yunwei.Dynamic prediction of coalbed methane production with attention mechanisms[J].Science Technology and Engineering,2023,23(2):550-557. [37] ZHOU Guangzhao,GUO Zanquan,SUN Simin,et al.A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction[J].Applied Energy,2023,344:121249. [38] LYU Zhihan,WANG Nana,LOU Ranran,et al.Towards carbon neutrality:prediction of wave energy based on improved GRU in maritime transportation[J].Applied Energy,2023,331:120394. [39] NIU Zhaoyang,ZHONG Guoqiang,YU Hui.A review on the attention mechanism of deep learning[J].Neurocomputing,2021,452:48-62. [40] ZHAO Zhibo,CHEN Yuhua,ZHANG Yi,et al.A deep learning model for predicting the production of coalbed methane considering time,space,and geological features[J].Computers & Geosciences,2023,173:105312. [41] LI Qi,LI Yaxiong,GAO Shusheng,et al.Well network optimization and recovery evaluation of tight sandstone gas reservoirs[J].Journal of Petroleum Science and Engineering,2021,196:107705. [42] LI Yong,YANG Jianghao,PAN Zhejun,et al.Nanoscale pore structure and mechanical property analysis of coal:an insight combining AFM and SEM images[J].Fuel,2020,260:116352. [43] HE Youwei,HE Zhiyue,TANG Yong,et al.Shale gas production evaluation framework based on data-driven models[J].Petroleum Science,2023,20(3):1659-1675. [44] LUO Guofan,TIAN Yao,SHARMA A,et al.Eagle ford well insights using data-driven approaches[C].IPTC19260-MS,2019:1-10. [45] YU Zhichao,WANG Zhizhang,JIANG Qingping,et al.Analysis of factors of productivity of tight conglomerate reservoirs based on random forest algorithm[J].ACS Omega,2022,7(23):20390-20404. [46] LI Hangyu,GONG Changping,LIU Shuyang,et al.Machine learning-assisted prediction of oil production and CO2 storage effect in CO2-water-alternating-gas injection(CO2-WAG)[J].Applied Sciences,2022,12(21):10958. [47] 李文倚,侯明雨,全航,等.一种基于知识图谱和随机森林算法的致密气井产能预测方法[J].特种油气藏,2024,31(5):77-84. LI Wenyi,HOU Mingyu,QUAN Hang,et al.A productivity prediction method for tight gas wells based on knowledge graph and random forest algorithm[J].Special Oil & Gas Reservoirs,2024,31(5):77-84. [48] XUE Liang,LIU Yuetian,XIONG Yifei,et al.A data-driven shale gas production forecasting method based on the multi-objective random forest regression[J].Journal of Petroleum Science and Engineering,2021,196:107801. [49] ZHU Jie,ZHAO Yuhan,HU Qiujia,et al.Coalbed methane production model based on random forests optimized by a genetic algorithm[J].ACS Omega,2022,7(15):13083-13094. [50] LONG Mingsheng,WANG Jianmin,DING Guiguang,et al.Transfer feature learning with joint distribution adaptation[C].IEEE6751384,2013:2200-2207. [51] WEISS K,KHOSHGOFTAAR T M,WANG Dingding.A survey of transfer learning[J].Journal of Big Data,2016,3:1-40. [52] MA Yuchi,CHEN Shuo,ERMON S,et al.Transfer learning in environmental remote sensing[J].Remote Sensing of Environment,2024,301:113924. [53] KHEDDAR H,HIMEUR Y,AL-MAADEED S,et al.Deep transfer learning for automatic speech recognition:towards better generalization[J].Knowledge-Based Systems,2023,277:110851. [54] LOTFOLLAHI M,NAGHIPOURFAR M,LUECKEN M D,et al.Mapping single cell data to reference atlases by transfer learning[J].Nature biotechnology,2022,40(1):121-130. [55] 刘合,李艳春,贾德利,等.人工智能在注水开发方案精细化调整中的应用现状及展望[J].石油学报,2023,44(9):1574-1586. LIU He,LI Yanchun,JIA Dеli,et al.Application status and prospects of artificial intelligence in the refinement of waterflooding development program[J].Acta Petrolei Sinica,2023,44(9):1574-1586. [56] NIU Wente,SUN Yuping,ZHANG Xiaowei,et al.An ensemble transfer learning strategy for production prediction of shale gas wells[J].Energy,2023,275:127443. [57] 姜春雷,方硕,刘伟,等.基于卷积神经网络和迁移学习的特高含水油井生产预测[J].中国石油大学学报(自然科学版),2023,47(6):162-170. JIANG Chunlei,FANG Shuo,LIU Wei,et al.Production prediction of extra high water cut oil well based on convolution neural network and transfer learning[J].Journal of China University of Petroleum(Edition of Natural Sciences),2023,47(6):162-170. [58] DU Shuyi,WANG Meizhu,YANG Jiaosheng,et al.An enhanced prediction framework for coalbed methane production incorporating deep learning and transfer learning[J].Energy,2023,282:128877. [59] CORNELIO J,MOHD R S,JAHANDIDEH A,et al.Investigating transfer learning for characterization and performance prediction in unconventional reservoirs[C].SPE204563-MS,2021:12-16. [60] 田建华,朱博华,卢志强,等.基于井控多属性机器学习的缝洞型储层预测方法[J].油气地质与采收率,2023,30(1):86-92. TIAN Jianhua,ZHU Bohua,LU Zhiqiang,et al.Fracture-cavity reservoir prediction based on well-controlled multi-attribute machine learning[J].Petroleum Geology and Recovery Efficiency,2023,30(1):86-92. [61] 盖建.基于自动机器学习的采油井压裂效果预测方法[J].油气地质与采收率,2023,30(1):161-170. GAI Jian.Prediction method for hydraulic fracturing effect of oil production well based on automatic machine learning technology[J].Petroleum Geology and Recovery Efficiency,2023,30(1):161-170. [62] 陈林,黎棚武,张绍俊,等. 基于机器学习的岩芯渗透率及裂缝开度预测[J]. 西南石油大学学报(自然科学版),2023,45(4):155-163. CHEN Lin,LI Pengwu,ZHANG Shaojun,et al.Prediction method of core permeability and fracture aperture based on machine learning[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4):155-163. [63] 朱博含,单玄龙,衣健,等.基于机器学习的火山岩识别方法及应用[J].特种油气藏,2024,31(5):41-49. ZHU Bohan,SHAN Xuanlong,YI Jian,et al.Volcanic rock identification method based on machine learning and its application[J].Special Oil & Gas Reservoirs,2024,31(5):41-49. [64] 柳洁,田冷,刘士鑫,等. 基于复合机器算法的致密气井产能预测模型[J].大庆石油地质与开发,2024,43(5):69-78. LIU Jie,TIAN Leng,LIU Shixin,et al.Prediction model of tight gas well productivity based on composite machine algorithm:taking Block SM of Ordos Basin as an example[J].Petroleum Geology & Oilfield Development in Daqing,2024,43(5):69-78. [65] 庞兰苏,王杨,蒋薇,等.基于机器学习的短生产周期碳酸盐岩气井产量预测研究[J]. 特种油气藏,2023,30(2):134-141. PANG Lansu,WANG Yang,JIANG Wei,et al.Research on yield prediction of carbonatite gas well with a short production cycle based on machine learning[J].Special Oil & Gas Reservoirs,2023,30(2):134-141. [66] 蒋文超.基于机器学习与模型融合的大庆油田SN区块油井压裂效果预测技术[J].大庆石油地质与开发,2023,42(1):64-72. JIANG Wenchao.Prediction model for production well hydraulic fracturing effect of Block SN in Daqing Oilfield based on machine learning and model ensemble[J].Petroleum Geology & Oilfield Development in Daqing,2023,42(1):64-72. |