特种油气藏 ›› 2025, Vol. 32 ›› Issue (4): 122-129.DOI: 10.3969/j.issn.1006-6535.2025.04.014

• 油藏工程 • 上一篇    下一篇

基于数据驱动的储气库井底压力预测

蒋华全1, 曾娟1, 李力民1, 温廷钧1, 周俊池1, 陈小凡2, 王剑2   

  1. 1.中国石油西南油气田重庆相国寺储气库有限公司,重庆 401121;
    2.西南石油大学油气藏地质及开发工程全国重点实验室,四川 成都 610500
  • 收稿日期:2024-08-25 修回日期:2025-04-01 出版日期:2025-08-25 发布日期:2025-09-03
  • 作者简介:蒋华全(1970—),男,高级工程师,1993年毕业于西安石油学院采油工程专业,现主要从事储气库生产技术与管理方面的研究工作。
  • 基金资助:
    四川省科技计划项目“致密储层复杂结构并多尺度非线性流动耦合模型研究”(2024NSFSC2012)

Data-driven bottomhole pressure prediction for gas storage reservoirs

JIANG Huaquan1, ZENG Juan1, LI Limin1, WEN Tingjun1, ZHOU Junchi1, CHEN Xiaofan2, WANG Jian2   

  1. 1. PetroChina Southwest Oil & Gas Field Chongqing Xiangguosi Gas Storage Co., Ltd., Chongqing 401121, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2024-08-25 Revised:2025-04-01 Online:2025-08-25 Published:2025-09-03

摘要: 针对储气库井底压力难以准确快速获取的问题,以相国寺储气库为研究对象,基于数据驱动原理,运用监督学习方法,对该储气库10口井共14组数据的12种特征参数进行了分析,开展井底压力预测研究,建立了高斯过程回归(GPR)、支持向量回归(SVR)和人工神经网络(ANN)3种井底压力预测模型,并对模型预测精度进行评价。研究表明:影响井底压力的主要因素为日注采量、井口压力、地层压力和井口温度;SVR、GPR、ANN模型的预测精度分别为99.2%、97.4%、95.1%。说明数据驱动方法能有效预测井底压力,其中,SVR模型可为储气库的注采调控提供更可靠的预测手段。该研究对提高储气库运行的安全性和经济性具有重要的实践指导意义。

关键词: 地下储气库, 井底压力, 机器学习, 数据驱动, 生产监测数据, 预测模型

Abstract: For the difficulty in accurately and swiftly obtaining bottomhole pressure in gas storage reservoirs,in this study,Xiangguosi Gas Storage was taken as the research object to analyze 12 characteristic parameters from 14 datasets across 10 wells based on the data-driven principles and supervised learning methods.Three bottomhole pressure prediction models:Gaussian Process Regression (GPR),Support Vector Regression (SVR),and Artificial Neural Network (ANN),were developed and evaluated for prediction accuracy.The study shows that the main factors influencing bottomhole pressure are daily injection-production volume,wellhead pressure,formation pressure,and wellhead temperature,and the prediction accuracy of SVR,GPR,and ANN models are 99.2%,97.4%,and 95.1%,respectively.This indicates that data-driven methods can effectively predict bottomhole pressure,with the SVR model offering a more reliable prediction for gas storage injection-production control.This research is of great practical significance for enhancing the safety and economy of gas storage operations.

Key words: underground gas storage, bottomhole pressure, machine learning, data-driven, production monitoring data, prediction model

中图分类号: